
Fixed-Point Designer™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Fixed-Point Designer™ Release Notes
© COPYRIGHT 2013–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2022b

Manage Simulink parameter diagnostics related to numeric issues 1-2

New Euler to North-East-Down Transformation HDL Optimized block . . 1-2

Improved numerical accuracy and generated code efficiency for relational
operations . 1-2

fixed.svd and svd Functions: Fixed-point singular value decomposition
. 1-3

Lookup Table Optimizer support for curve fitting objects 1-3

Reduced latency of partial-systolic QR decomposition and matrix solve
blocks . 1-3

New blocks for burst Q-less QR decomposition and asynchronous matrix
solve . 1-3

New Simulink edit-time and Model Advisor check for numeric efficiency
. 1-4

Expanded support for half-precision data type . 1-5

fixed.realConditionNumberUpperBound and
fixed.complexConditionNumberUpperBound Functions: Analytically
determine an upper bound for condition number 1-5

fixed.singularValueUpperBound Function: Upper bound for largest
singular value of matrix . 1-5

Specify maximum word length in functions for analytically determining
fixed-point data types . 1-5

fixed.fimathLike: Create fimath object like input . 1-6

Linear system solver and matrix factorization blocks use AMBA AXI
handshake protocol . 1-6

Updated Numeric Type Scope Interface . 1-6

New Fixed-Point Designer Examples . 1-6

iii

Contents

R2022a

Expanded support for Tikhonov regularization parameter in linear system
solver and matrix factorization blocks and functions 2-2

Lookup table optimization support for curve fitting objects 2-3

Lookup table optimization improved memory reduction for 1D and flat
interpolation . 2-3

Estimate cost of generated code for Simulink models 2-3

Improved numerical accuracy and generated code efficiency for fixed-
point division with mixed signedness and slope and bias scaling 2-3

Improved generated code fixed-point division by zero protection 2-4

Improved numerical accuracy and generated code efficiency for fixed-
point operations that do not lose precision . 2-5

Implicit expansion for logical operators, bitwise operations, and division,
automatically expand dimensions of length 1 . 2-5

Improved accuracy in comparing fi objects and floating-point numbers
using relational operators . 2-6

GPU code generation support for half-precision data types in MATLAB
Function blocks . 2-7

New functions and syntax supported for half-precision inputs 2-7

fi bitset now supports scalar expansion . 2-7

New Fixed-Point Designer Examples . 2-8

R2021b

Generate native half-precision C code for embedded hardware targets
. 3-2

Rapid Accelerator mode support for half-precision floating-point data
types in Simulink . 3-2

Generate an optimized lookup table approximation as a MATLAB function
. 3-2

Improved numerical accuracy and generated code efficiency for fixed-
point multiplication with slope and bias scaling 3-2

iv Contents

Improved numerical accuracy and generated code efficiency for fixed-
point division with slope and bias scaling . 3-2

Implicit Expansion: For fi plus, minus, and times, automatically expand
dimensions of length 1 . 3-3

Fixed-Point Tool: Pause and resume data type optimization search, import
fxpOptimizationOptions object, and guided workflow selection 3-3

Pause and resume data type optimization search 3-3
Fixed-Point Tool: Import fxpOptimizationOptions object 3-3
Fixed-Point Tool provides guided workflow selection 3-4

Data Type Optimization: Restrict instrumentation to a subsystem, enforce
known data types, maintain model parameter settings, and warn about
unsupported constructs . 3-4

Restrict instrumentation to a subsystem . 3-4
Enforce known data types for variables in a system 3-4
Maintain original values of model parameters that are altered by fxpopt

. 3-5
Warn about unsupported constructs . 3-5

Analytically determine fixed-point data types when solving linear systems
of equations . 3-5

fixed.cordicDivide and fixed.cordicReciprocal Functions: Fixed-point
divide and reciprocal using CORDIC . 3-6

New functions supported for half-precision inputs 3-6

fi support for dec2base, dec2bin, and dec2hex . 3-6

Data Type Optimization: Specify multiple types of tolerances 3-6

New Fixed-Point Designer Examples . 3-7

Functionality being removed or changed . 3-7
Change in default behavior of quantizenumeric for complex input 3-7
Change in rounding behavior for quantize function 3-8

R2021a

Half-precision data type support for MATLAB Function blocks 4-2

New HDL-optimized Simulink blocks for reciprocal, divide, and modulo
. 4-2

New Simulink blocks and MATLAB functions for divide and modulo 4-2

Improved numerical accuracy and generated code efficiency for cast
operations . 4-2

v

Generate optimized one-dimensional lookup tables for HDL applications
. 4-3

New Fixed-Point Designer Examples . 4-3

Reduced HDL resource utilization in fixed-point matrix library blocks
. 4-4

fixed.extractNumericType function: Extract numeric type of input 4-4

Generate C++ code for half-precision floating-point data types in
Simulink . 4-4

Control inherited block output data type for half-precision 4-4

Fixed-Point Tool: View optimization details, visualize data types, and
manually stop optimization . 4-4

View optimization details in the Fixed-Point Tool . 4-4
Data type visualizer: Understand and analyze optimized data types by

viewing histograms of the dynamic ranges of signals in your model . . . 4-5
Stop data type optimization . 4-6

Lookup table optimization support for functions with scalar inputs 4-6

Improved lookup table value optimization . 4-6

Improved numerical accuracy and generated code efficiency for fi inputs
to power, .^ . 4-6

Data type optimization workflow improvements . 4-7
Override data types with scaled doubles . 4-7
Log a reduced set of data points . 4-7

Stop optimization in Lookup Table Optimizer app 4-7

New Fixed-Point Designer Simulink block library 4-7

Functionality being removed or changed . 4-7
Inexact property names for fi, fimath, and numerictype objects not

supported . 4-7

R2020b

Half Precision in Simulink: Design, simulate, and generate code for half-
precision systems . 5-2

Expanded half-precision support for Deep Learning Toolbox and FFT
functions . 5-2

Explore half precision in optimized lookup tables 5-2

vi Contents

New API functions for half-precision data type support in user-written S-
functions . 5-2

New QR decomposition and matrix solve Simulink blocks 5-3

New QR decomposition and matrix solve MATLAB functions 5-3

Optimize data types based on operator counts . 5-4

Export optimization workflow steps to a MATLAB script 5-5

Automatically propagate slope-bias data types during data type
optimization . 5-5

Data type optimization workflow improvements . 5-5
Automatically isolate constructs not supported for fixed-point conversion

. 5-5
Override data types in range collection step of optimization 5-5
Inspect optimization solutions using Simulation Manager 5-6

Functionality being removed or changed . 5-6
Change in default behavior of fi for -Inf, Inf, and NaN 5-6
Change in default data type override in the Fixed-Point Tool 5-6

R2020a

Half Precision: Design, simulate, and generate code for half-precision
systems . 6-2

Half precision code generation in MATLAB . 6-2
Tech Preview: Half precision in Simulink . 6-2

Fixed-Point Tool: Convert and optimize data types, and explore ranges
. 6-2

New Fixed-Point Designer Simulink block library 6-2
Math Operations . 6-2
Matrix Operations . 6-2

Lookup Table Optimization: Iterative redesign and batch compression of
lookup tables, parallelization of lookup table optimization 6-3

Iteratively redesign lookup tables in your model . 6-3
Automatically compress all lookup tables in a system 6-3
Parallelized lookup table optimization . 6-3

Data Type Optimization: Specify a safety margin, enforce known data
types, and other enhancements . 6-3

Review all changes made during optimization . 6-3
Specify a safety margin for optimization . 6-4
Enforce known data types in a system . 6-4
Revert optimization . 6-4

vii

Coder Type Editor: Create and edit input types interactively 6-5

normalizedReciprocal: Compute the normalized reciprocal 6-5

nextpow2: Compute the next-higher power of 2 of fixed-point values . . . 6-5

Improved numerical accuracy for slope-bias scaled fixed-point operations
. 6-5

Generate test data as a dataset . 6-6

Functionality being removed or changed . 6-6

R2019b

Propose data types based on multiple simulation scenarios in the Fixed-
Point Tool . 7-2

Restore model to original design . 7-3

Quantize and generate fixed-point C/C++ code for a trained SVM model
(requires MATLAB Coder and Statistics and Machine Learning Toolbox)
. 7-3

Allow off-curve table values in optimized lookup tables 7-3

Generate optimized AUTOSAR-compliant lookup table 7-4

Generate simulation inputs to test full operating range of design 7-4

Features under tech preview . 7-5
Tech Preview: HDL-optimized fixed-point matrix operations blocks 7-5
Tech Preview: Half-precision data types in Simulink 7-5

R2019a

Emulate hardware handling of denormal numbers 8-2

New data type propagation rules for Sum, Gain, and Product blocks 8-2

Automatically prepare Simulink systems for conversion to fixed point . . 8-2

Complex support for half-precision . 8-2

Specify multiple simulation scenarios for data type optimization 8-3

viii Contents

Lookup table optimization options available in the app 8-3

Specify new constraints for lookup table optimization 8-3

Derived range analysis support for fixed-point optimization 8-3

Specify tolerances of signals in system for conversion 8-4

New functions supported for half-precision inputs 8-4

R2018b

Lookup Table Optimization: Automatically replace subsystems with a
direct lookup table and other enhancements . 9-2

Approximate a Subsystem with a lookup table . 9-2
Generate a direct lookup table to approximate a function or subsystem . . 9-2
Generate a lookup table approximation from a function handle using the

Lookup Table Optimizer app . 9-2
Generate lookup tables with flat and nearest interpolation methods 9-2
Automatically replace blocks with an optimized lookup table block 9-2

Data Type Optimization: Using parallel simulations, automatically select
and apply heterogeneous data types for your system under design . . . 9-2

Parallel support for data type optimization . 9-2
New method for specifying required behavior of optimized design 9-2

Single Precision Converter: Convert MATLAB Function blocks to single
precision . 9-3

cordicacos and cordicasin Functions: Compute fixed-point CORDIC
inverse sine and cosine . 9-3

Simulation Analysis and Performance: Instrumentation support for Fast
Restart mode . 9-3

Explore and debug Fixed-Point Tool results with sorting and filtering
functionalities . 9-3

Design and simulate half-precision systems in MATLAB 9-4

R2018a

Lookup table optimization: Approximate functions using a lookup table
and optimize existing lookup tables to minimize RAM usage 10-2

Data type optimization: Automatically select and apply heterogeneous
data types for your system under design, optimizing bit width. 10-3

ix

Redesigned code generation reports: View fiaccel and instrumentation
results with improved user interface . 10-3

R2017b

Simplified Fixed-Point Tool: Convert Simulink systems to fixed point using
the updated tool that provides guidance at each step of the workflow
. 11-2

Data Type Visualizer: Understand and analyze data type choices by
viewing histograms of the dynamic range of signals in your model
. 11-2

Data Type Exploration: Iteratively explore multiple floating point to fixed-
point conversions to determine the optimal choice 11-3

Function Input and Output Logging: Selectively log and plot function
inputs and outputs at any level of your design in the Fixed-Point
Converter app . 11-3

Simulink Diagnostic Management: Suppress immaterial diagnostic
warnings and errors from specific blocks to efficiently discover
modeling errors . 11-5

Expanded Overflow Diagnostics: Comprehensive run-time diagnostics for
wrapping and saturating overflows from Stateflow and MATLAB
Function blocks . 11-6

Autoscaling Lookup Table Objects: Propose and apply fixed-point data
types for Simulink Lookup Table and Breakpoint objects 11-6

Check for expensive fixed-point data types in generated code 11-6

Propose and apply data types for model reference blocks
programmatically . 11-6

cordictanh function for computing fixed-point CORDIC-based hyperbolic
tangent . 11-6

Functionality being removed or changed . 11-7

R2017a

Simulink Diagnostic Management: Control which simulation and fixed-
point diagnostic warnings you receive from specific blocks, including
model reference . 12-2

Select blocks with certain diagnostic suppressions by default 12-2

x Contents

Diagnostic suppressor functions support MSLDiagnostic as input argument
. 12-2

Improved workflow for suppressing diagnostics from referenced models
. 12-2

Derived range analysis support for System objects in Simulink 12-3

Autoscaling support for Simulink.AliasType objects 12-3

Improved data type proposals for shared data type groups across model
reference . 12-3

More fixed-size variable information in Convert to Fixed-Point step of the
Fixed-Point Converter app . 12-3

fimath property changes . 12-4

R2016b

Single-Precision Conversion: Automatically convert double-precision
systems to use single-precision data types in Simulink 13-2

Float to Fixed Conversion of MATLAB Function Blocks: Automatically
generate fixed-point versions of floating-point MATLAB Function blocks
. 13-2

Histogram Instrumentation in Simulink: Generate log2 histograms of
Simulink signals and blocks from simulation data 13-3

Autoscaling numerictype Objects: Propose and apply fixed-point data
types for Simulink numeric type objects . 13-5

Range analysis support for FIR filters, Dead Zone, and Rate Limiter
blocks . 13-5

Simulink Diagnostic Suppressor . 13-5

Reduced number of multiplication helper functions 13-5

Improved accuracy of fixed-point sin, cos, and mod functions 13-5

Improved workflow for collecting and analyzing ranges in the Fixed-Point
Converter app . 13-6

xi

R2016a

Autoscaling Parameter Objects: Automatically propose and apply data
types for parameter objects . 14-2

View and edit fi objects in Model Explorer . 14-2

Simulate system level designs that integrate referenced models targeting
an assembly of heterogeneous embedded devices 14-2

Enhancements to Fixed-Point Converter app . 14-3
Support for arrays of structures . 14-3
Structures in generated fixed-point code . 14-3
Revert changes to input type definitions . 14-3
View complete error message in error table . 14-3
Additional keyboard shortcuts in the code generation report 14-3
Changes to Fixed-Point Conversion Code Coverage 14-4

R2015aSP1

Bug Fixes

R2015b

Simulink Fixed-Point Tool workflow simplification: Propose signedness
and data types for inherited and floating-point types 16-2

System under design (SUD) specification . 16-2
Signedness proposals . 16-2
Proposals for objects using inherited and floating-point types 16-2
Two-way traceability between model and Fixed-Point Tool 16-3
New configurations for model settings . 16-3

Double-precision to single-precision conversion: Convert double-
precision MATLAB code to single-precision MATLAB code using the
command line . 16-4

MATLAB Fixed-Point Converter app streamlined workflow: Restore
project state and minimize regeneration of MEX files 16-4

Saving and restoring fixed-point conversion workflow state in the app . . 16-4
Minimized regeneration of MEX files . 16-5
Specification of additional fimath properties in app editor 16-5
Improved management of comparison plots . 16-5
Variable specializations . 16-6
Improvements to Readability of Generated Code 16-7
Tab completion for specifying files . 16-8

xii Contents

Improvements for manual type definition . 16-8
Compatibility between the app colors and MATLAB preferences 16-9

Range analysis for Delay blocks: Improve accuracy and speed of range
analysis on models using Delay blocks . 16-9

Control of signed shifts in fixed-point scaling operations: Control the use
of signed shifts in generated code . 16-9

MATLAB . 16-9
Simulink . 16-10

Access full-precision value of fi object in decimal and string format . . 16-10

Detection of multiword operations . 16-10
MATLAB . 16-10
Simulink . 16-10

Enhanced Model Advisor check for implementing strict single-precision
designs . 16-11

System object instrumentation in Fixed-Point Tool 16-11

R2015a

Derived Ranges for MATLAB Function Blocks in Simulink 17-2

Fixed-Point Converter app enhancements, including detection of dead
and constant folded code, support for projects with multiple entry
point functions and support for global variables 17-2

Support for projects with multiple entry-point functions 17-2
Support for global variables . 17-2
Code coverage based translation . 17-2
Conversion from project to MATLAB scripts for command-line fixed-point

conversion . 17-2
Generated fixed-point code enhancements . 17-2
Integration with MATLAB Coder app interface . 17-3

Automated conversion of additional DSP System objects using the Fixed-
Point Converter app . 17-3

Fixed-Point SimState logging and root logging improvements 17-3

Flexible structure assignment of buses . 17-3

eye(m,'like',a) syntax supported for fixed-point inputs 17-3

New interpolation method for generating lookup table MATLAB function
replacements . 17-4

Fixed-point scaling information in Code Interface Report 17-4

xiii

R2014b

Fixed-Point Converter app for automated conversion of floating-point
MATLAB code . 18-2

Commands for scripting fixed-point conversion and accessing the
collected data in Simulink . 18-2

Automated fixed-point conversion for commonly used DSP System
objects, including Biquad Filter, FIR Filter, and FIR Rate Converter
. 18-2

Simulation range collection and data type proposals for MATLAB
Function blocks in Simulink . 18-3

Overflow diagnostics to distinguish between wrap and saturation in
Simulink . 18-3

Highlighting of potential data type issues in generated HTML report
. 18-3

Code generation of for loops using fixed-point loop indices 18-3

Cast net slope computations using rational numbers 18-3

Lock Column View option in the Fixed-Point Tool 18-4

Fixed-Point Advisor enhancements . 18-4

hdlram renamed hdl.RAM . 18-4

Changes to data type strings . 18-4
Signal data type display . 18-4
tostring function now uses 0 and 1 to represent signedness 18-4

New featured examples . 18-5

R2014a

Data type override and automatic data typing for bus objects 19-2
Data type override for bus objects . 19-2
Autoscaling for bus objects . 19-2

Derived ranges for complex signals in Simulink 19-2

cordicsqrt function for fixed-point CORDIC-based square root
functionality . 19-2

xiv Contents

Overflow detection with scaled double data types in MATLAB Coder
projects . 19-2

Fixed-point ARM Cortex-M code replacement support for DSP System
Toolbox FIR filters . 19-3

Fixed-Point Advisor support for referenced configuration sets 19-3

Enhancements to automated conversion of MATLAB code 19-3
Support for MATLAB classes . 19-3
Generated fixed-point code enhancements . 19-3
Fixed-point report . 19-3

Automatic C compiler setup . 19-3

More flexible control of dsp.LMSFilter System object fixed-point settings
. 19-4

Derived ranges for For Each and For Each Subsystem blocks 19-4

R2013b

C99 long long integer data type for embedded code generation 20-2

Model Advisor fixed-point checks with additional coverage and
optimization awareness . 20-2

fi object as an index in colon expressions and an argument to numel and
bit index functions . 20-2
fi object as an index in colon expressions . 20-2
fi objects as bit index input argument . 20-2
fi objects as shift-value input argument . 20-3
numel function support for fi inputs . 20-3

Improved efficiency of data type internal rules for Lookup Table blocks
. 20-3

Derived ranges for complex variables in MATLAB Coder projects 20-3

Simplified modeling of single-precision designs 20-3

Range analysis support on Mac platforms . 20-4

Changes to showInstrumentationResults function options 20-4
New option to suppress display of MATLAB code 20-4
Removal of -browser option . 20-4

Changes to Continuous state-space block family range analysis support
. 20-5

xv

Enhanced fiaccel support for int64 and uint64 functions 20-5

Support for LCC compiler on Microsoft Windows (64-bit) machines . . . 20-5

Warning for use of inexact fi and fimath property names 20-5

Conversion of numeric variables into Simulink.Parameter objects 20-5

Fixed-point conversion test file coverage results 20-6

Fixed-point conversion workflow supports designs that use enumerated
types . 20-6

Fixed-point conversion of variable-size data using simulation ranges
. 20-6

Error checking improvements for bitconcat, bitandreduce, bitorreduce,
bitxorreduce, bitsliceget functions . 20-6

Legacy data type specification functions return numeric objects 20-6

numberofelements function being removed in a future release 20-8

R2013a

Product restructuring . 21-2

Histogram logging in instrumented MATLAB Code Generation report
. 21-2

fi object in indexing and switch-case expressions 21-2

zeros, ones, and cast code reuse for floating-point and fixed-point types
. 21-2

Code generation for x.^n when n is a variable and x is a fi object 21-3

Fixed-Point Advisor support for model reference 21-3

Automated conversion of floating-point to fixed-point types in MATLAB
Coder projects . 21-3

Improved autoscaling for models with virtual bus signals 21-4

Data Type Override for MATLAB Function block using built-in doubles
and singles . 21-4

Instrumentation for arrays of structs . 21-4

File I/O function support . 21-4

xvi Contents

Support for nonpersistent handle objects . 21-5

Load from MAT-files for code acceleration . 21-5

New toolbox functions supported for code acceleration and generation
. 21-5

Function to be removed in a future release . 21-6

Function being removed . 21-6

xvii

R2022b

Version: 7.5

New Features

Bug Fixes

Compatibility Considerations

1

Manage Simulink parameter diagnostics related to numeric issues
Diagnostic messages for parameter overflow, underflow, and precision loss now provide more
numerically rich information to help you identify the cause of the warning or error. You can choose to
disable or suppress the warning or error directly from the suggested actions of the diagnostic
message or explore more details in the Parameter Quantization Advisor.

New Euler to North-East-Down Transformation HDL Optimized block
The Euler to NED Transformation HDL Optimized block computes the Euler to North-East-Down
(NED) coordinate transformation using a hardware-efficient CORDIC rotation kernel. The block
provides a pipelined or burst architecture and hardware-friendly control signals. This block supports
HDL code generation using HDL Coder™.

Improved numerical accuracy and generated code efficiency for
relational operations
Fixed-Point Designer now has improved numerical accuracy for relational operations involving
certain combinations of fixed-point and integer data types. Additionally, generated code is more
efficient and more readable.

Compatibility Considerations
Numerical outputs and generated code for relational operations involving fixed-point and integer data
types may be more accurate than in previous releases. For example, this table illustrates the
difference in generated code for this Simulink® model.

R2022b

1-2

Previous Releases R2022b

Generated code: Y = ((U1 * 52429U) >> 3
== (uint32_T)U0 << 16);

Generated code: Y = U0 * 10U == U1;

fixed.svd and svd Functions: Fixed-point singular value decomposition
Use the fixed.svd and svd functions to compute the singular value decomposition of fixed-point
matrices. The svd function automatically adjusts the data type of fixed-point input to avoid overflow
and increase precision. The fixed.svd function allows full control over the fixed-point types. You
can use fixed.svd and svd to generate efficient, purely integer C code.

Lookup Table Optimizer support for curve fitting objects
The Lookup Table Optimizer now supports curve fitting cfit objects as valid inputs for
approximation.

Reduced latency of partial-systolic QR decomposition and matrix solve
blocks
These blocks now have reduced latency as compared to previous releases.

Linear system solvers:

• Complex Partial-Systolic QR Decomposition
• Complex Partial-Systolic Q-less QR Decomposition
• Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor

Matrix factorizations:

• Complex Partial-Systolic Matrix Solve Using QR Decomposition
• Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
• Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

New blocks for burst Q-less QR decomposition and asynchronous
matrix solve
Use these blocks to perform burst Q-less QR decomposition.

1-3

• Real Burst Q-less QR Decomposition Whole R Output
• Complex Burst Q-less QR Decomposition Whole R Output
• Real Burst Q-less QR Decomposition with Forgetting Factor Whole R Output
• Complex Burst Q-less QR Decomposition with Forgetting Factor Whole R Output

Use these blocks to perform asynchronous matrix solve. The forward- and backward-substitution and
Q-less QR decomposition run independently using the latest R and B matrices.

• Real Burst Asynchronous Matrix Solve Using Q-less QR Decomposition
• Complex Burst Asynchronous Matrix Solve Using Q-less QR Decomposition
• Real Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
• Complex Burst Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

New Simulink edit-time and Model Advisor check for numeric
efficiency
You can now use Simulink edit-time checking to identify when code generated from a Simulink model
will be more efficient if you enable the Support long long parameter. This numeric efficiency check
alerts you when signals and ports in your model will result in expensive multi-word types in
generated code because the long long data type is not enabled. The edit-time check includes a Fix
button you can use to enable the Support long long parameter, or you can choose to suppress the
warning. Edit-time checking requires a Simulink Check™ license. For more information on how to
enable edit-time checking, see “Check Model Compliance Using Edit-Time Checking” (Simulink
Check).

When you generate code for a model that could be made more efficient by enabling the Support long
long parameter, a message is logged in the Diagnostic Viewer with an Apply button you can use to
easily enable the parameter.

You can also access this check in the Model Advisor under By Product > Embedded Coder >
Check usage of 'long long' data type. This Model Advisor check requires an Embedded Coder®

license. For more information, see “Embedded Coder Checks” (Embedded Coder).

R2022b

1-4

Only explicit usage of signals and ports having data types with word lengths greater than the long
data type are detected. This check does not flag operation outputs that implicitly have word lengths
greater than long data type, such as the output of a multiply operation.

Expanded support for half-precision data type
The following now support the half-precision data type:

• System object™
• MATLAB System block
• hdl.RAM System object

These functions now support half-precision inputs:

• allfinite
• anynan

For more information, see half and “Half Precision Code Generation Support”.

fixed.realConditionNumberUpperBound and
fixed.complexConditionNumberUpperBound Functions: Analytically
determine an upper bound for condition number
Use the fixed.realConditionNumberUpperBound and
fixed.complexConditionNumberUpperBound functions to analytically determine an upper bound
for the condition number of a matrix. You can use this value to choose the number of bits of precision
required in the solution of a least-squares matrix equation.

fixed.singularValueUpperBound Function: Upper bound for largest
singular value of matrix
Use the fixed.singularValueUpperBound function to analytically determine an upper bound for
the largest singular value of a matrix.

fixed.singularValueUpperBound, fixed.realSingularValueLowerBound, and
fixed.complexSingularValueLowerBound are used by the
fixed.realConditionNumberUpperBound and fixed.complexConditionNumberUpperBound
functions to analytically determine an upper bound for the condition number of a matrix.

Specify maximum word length in functions for analytically
determining fixed-point data types
You can now use the maxWordLength parameter to specify the maximum word length of fixed-point
types in these functions:

• fixed.complexQlessQRMatrixSolveFixedpointTypes
• fixed.complexQRMatrixSolveFixedpointTypes
• fixed.qlessqrFixedpointTypes

1-5

• fixed.qrFixedpointTypes
• fixed.realQlessQRMatrixSolveFixedpointTypes
• fixed.realQRMatrixSolveFixedpointTypes

This functionality allows you to specify word lengths larger than 128 bits in MATLAB® interpreted
execution for fixed.qrMatrixSolve and related functions.

fixed.fimathLike: Create fimath object like input
Use the fixed.fimathLike function to create a fimath object that has the same fixed-point math
settings as the input. This allows you to specify that the fixed-point arithmetic be the same as the
input, rather than requiring you to explicitly specify a fimath object and attach it to the input.
fixed.fimathLike supports binary-point scaling and slope-bias scaling.

Linear system solver and matrix factorization blocks use AMBA AXI
handshake protocol
All blocks in the Fixed-Point Designer HDL Support > Matrices and Linear Algebra library now
use the industry-standard AMBA AXI handshake protocol. For more information, see “AMBA AXI
Handshake Process”.

Updated Numeric Type Scope Interface
The Numeric Type Scope has a new, simplified interface when you launch the scope from the
Instrumentation Report Viewer which shows an improved display of the histogram information.
For an example, see showInstrumentationResults.

New Fixed-Point Designer Examples
New examples to help you get started with blocks in the Fixed-Point Designer HDL Support >
Matrix Factorizations library:

• “Implement Hardware-Efficient Real Burst Q-less QR with Forgetting Factor”
• “Implement Hardware-Efficient Complex Burst Q-less QR with Forgetting Factor”

R2022b

1-6

New examples to help you get started with blocks in the Fixed-Point Designer HDL Support >
Linear System Solvers library:

• “Implement Hardware-Efficient Real Burst Matrix Solve Using Q-less QR Decomposition with
Forgetting Factor”

• “Implement Hardware-Efficient Complex Burst Matrix Solve Using Q-less QR Decomposition with
Forgetting Factor”

• “Implement Hardware-Efficient Real Burst Asynchronous Matrix Solve Using Q-less QR
Decomposition”

• “Implement Hardware-Efficient Complex Burst Asynchronous Matrix Solve Using Q-less QR
Decomposition”

New examples to help you get started with Design Evolution Manager in MATLAB Online™:

• “Use Design Evolution Manager with the Fixed-Point Tool”

1-7

R2022a

Version: 7.4

New Features

Bug Fixes

Compatibility Considerations

2

Expanded support for Tikhonov regularization parameter in linear
system solver and matrix factorization blocks and functions
The Tikhonov regularization parameter is now supported for all linear system solver and matrix
factorization blocks and functions. This parameter is also supported for all functions for analytically
determining fixed-point data types for linear system solvers and matrix factorizations.

Use of the Tikhonov regularization parameter can improve the conditioning of an ill-posed problem
and reduce the variance of the estimates. While biased, the reduced variance of the estimate often
results in a smaller mean squared error when compared to least-squares estimates. Use of the
Tikhonov regularization parameter can also result in more efficient fixed-point data types analytically
determined for the problem.

These linear system solver and matrix factorization blocks now support the Tikhonov regularization
parameter:

• Complex Burst QR Decomposition
• Real Burst QR Decomposition
• Complex Burst Matrix Solve Using QR Decomposition
• Real Burst Matrix Solve Using QR Decomposition
• Complex Burst Q-less QR Decomposition
• Real Burst Q-less QR Decomposition
• Complex Partial-Systolic Q-less QR Decomposition
• Real Partial-Systolic Q-less QR Decomposition
• Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
• Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
• Complex Burst Matrix Solve Using Q-less QR Decomposition
• Real Burst Matrix Solve Using Q-less QR Decomposition
• Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor
• Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor
• Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
• Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

These linear system solver and matrix factorization functions now support the Tikhonov
regularization parameter:

• fixed.qlessQR
• fixed.qlessQRMatrixSolve

These functions for analytically determining fixed-point data types for linear system solvers and
matrix factorizations now support the Tikhonov regularization parameter:

• fixed.qrFixedpointTypes
• fixed.qlessqrFixedpointTypes
• fixed.realQRMatrixSolveFixedpointTypes
• fixed.complexQRMatrixSolveFixedpointTypes

R2022a

2-2

https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/complexburstqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/realburstqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/complexburstmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/realburstmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/complexburstqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/realburstqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/complexpartialsystolicqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/realpartialsystolicqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/complexpartialsystolicmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/realpartialsystolicmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/complexburstmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/realburstmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/complexpartialsystolicqlessqrdecompositionwithforgettingfactor.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/realpartialsystolicqlessqrdecompositionwithforgettingfactor.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/complexpartialsystolicmatrixsolveusingqlessqrdecompositionwithforgettingfactor.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/realpartialsystolicmatrixsolveusingqlessqrdecompositionwithforgettingfactor.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/fixed.qlessqr.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/fixed.qlessqrmatrixsolve.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/fixed.qrfixedpointtypes.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/fixed.qlessqrfixedpointtypes.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/fixed.realqrmatrixsolvefixedpointtypes.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/fixed.complexqrmatrixsolvefixedpointtypes.html

• fixed.realQlessQRMatrixSolveFixedpointTypes
• fixed.complexQlessQRMatrixSolveFixedpointTypes
• fixed.realSingularValueLowerBound
• fixed.complexSingularValueLowerBound

Lookup table optimization support for curve fitting objects
The FunctionApproximation.Problem object now supports curve fitting cfit (Curve Fitting
Toolbox) objects as valid inputs for approximation.

f = fittype('exp1');
c = cfit(f,0.1,0.2);
p = FunctionApproximation.Problem(c);

Lookup table optimization improved memory reduction for 1D and flat
interpolation
The Lookup Table Optimizer has an improved algorithm for lookup table value and breakpoint
optimization for one-dimensional functions with flat interpolation. This enhancement can enable
improved memory reduction of the optimized lookup table and faster completion of the lookup table
optimization process.

This improvement applies when the function to approximate is one-dimensional and all of these
options are specified in FunctionApproximation.Options:

• Interpolation is set to Flat.
• BreakpointSpecification is set to ExplicitValues.
• OnCurveTableValues is set to false.

Estimate cost of generated code for Simulink models
Fixed-Point Designer now has design cost metrics you can use to estimate the cost of implementing
your Simulink design in embedded C code. Analyze your model and report detailed cost data that can
be traced back to the source in the Simulink model. Use a data segment metric to estimate the total
size in bytes of all global variables and static local variables used in code generation. Use a program
size indicator based on a weighted count of operators to conduct trade studies or track design growth
following a change. For more information, see Collect Design Cost Metrics.

Improved numerical accuracy and generated code efficiency for fixed-
point division with mixed signedness and slope and bias scaling
Fixed-Point Designer now has improved numerical accuracy for fixed-point division operations with
mixed signedness in simulation and generated code. Additionally, generated code is more efficient
and more readable.

This improvement applies to fixed-point division where the fixed-point slope is not a power of 2 and to
non-zero bias.

2-3

https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/fixed.realqlessqrmatrixsolvefixedpointtypes.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/fixed.complexqlessqrmatrixsolvefixedpointtypes.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/fixed.realsingularvaluelowerbound.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/fixed.complexsingularvaluelowerbound.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/functionapproximation.problem-class.html
https://www.mathworks.com/help/releases/R2022a/curvefit/cfit.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/collect-design-cost-metrics.html

Compatibility Considerations
Numerical outputs and generated code for fixed-point division operations with mixed signedness and
slope and bias scaling may be more accurate than in previous releases. For example, this table
illustrates the difference in generated code for this Simulink model.

Previous Releases R2022a
Y = (uint16_T)(((uint16_T)((U0 << 9) / U1) * 125U) >> 6);Y = (uint16_T)(U0 * 1000 / U1);

Improved generated code fixed-point division by zero protection
Fixed-Point Designer now has improved generated code for fixed-point division operations. Fewer
helper functions are generated for code that guards against division by zero, and inline code is
generated instead.

This improvement applies to fixed-point division when the parameter
NoFixptDivByZeroProtection is set to Off. For more information, see Remove code that protects
against division arithmetic exceptions (Embedded Coder).

Generated code for fixed-point division operations may differ from previous releases but is
numerically equivalent. For example, this table illustrates the difference in generated code for this
Simulink model.

Previous Releases R2022a
Y = div_s32s64(U0 * 100000000LL, U1); if (U1 == 0LL) {

 if (U0 * 100000000LL >= 0LL) {
 Y = MAX_int32_T;
 } else {
 Y = MIN_int32_T;
 }
} else {
 Y = (int32_T)(U0 * 100000000LL / U1);
}

R2022a

2-4

https://www.mathworks.com/help/releases/R2022a/ecoder/ref/remove-code-that-protects-against-division-arithmetic-exceptions.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ref/remove-code-that-protects-against-division-arithmetic-exceptions.html

Improved numerical accuracy and generated code efficiency for fixed-
point operations that do not lose precision
Fixed-Point Designer now has improved numerical accuracy for fixed-point operations that can be
computed without loss of precision in simulation and generated code. Additionally, generated code is
more efficient and more readable.

Compatibility Considerations
Numerical outputs and generated code for fixed-point operations that do not lose precision may be
more accurate than in previous releases. For example, this table illustrates the difference in
generated code for this Simulink model.

Previous Releases R2022a
Y = mul_s32_loSR(mul_s32_loSR(U0 * 13107 + -52428800,
U1, 14U), 5, 2U) + 4000;

Y = (U0 + -4000) * U1 + 4000;

Implicit expansion for logical operators, bitwise operations, and
division, automatically expand dimensions of length 1
These functions now support implicit expansion with fi inputs.

Relational operators:

• eq
• ge
• gt
• le
• lt
• ne

Logical operators:

• and
• or
• xor

Division:

• divide
• ldivide (.\)

2-5

https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/embedded.fi.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/embedded.fi.eq.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/embedded.fi.ge.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/embedded.fi.gt.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/embedded.fi.le.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/embedded.fi.lt.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/embedded.fi.ne.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/embedded.numerictype.divide.html

• rdivide (./)

Implicit expansion is a generalization of scalar expansion. With scalar expansion, a scalar expands to
the same size as another array to facilitate element-wise operations. With implicit expansion, the
functions listed here can implicitly expand their inputs to the same size as long as the arrays have
compatible sizes. Two arrays have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same, or one of them is 1. See Compatible Array Sizes for Basic Operations.

Improved accuracy in comparing fi objects and floating-point numbers
using relational operators
Fixed-Point Designer now has improved accuracy when comparing fi objects to floating-point
numbers using relational operators.

In previous releases, when comparing a single or double to a fi object, the floating-point value was
cast to the same word length and signedness of the fi object. This process could lead to incorrect
results. For example:

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 0 0

fi(65534)
fi(65534.25) == 65534.25

ans =

 65534

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: -1

ans =

 logical

 1

Starting in R2022a, relational operators comparing fi objects to floating-point numbers will always
return the mathematically correct behavior. The previous examples now gives these results:

fi(0,0,8) > [-1,10]

ans =

 1×2 logical array

 1 0

fi(65534.25) == 65534.25

R2022a

2-6

https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/embedded.fi.rdivide.html
https://www.mathworks.com/help/releases/R2022a/matlab/matlab_prog/compatible-array-sizes-for-basic-operations.html

ans =

 logical

 0

Note that the updated algorithm can produce subtle, but accurate, results. For example:

fi(pi) == pi

ans =

 logical

 0

Compatibility Considerations
Simulation results for relational operations between fi objects and floating-point singles or doubles
may be more accurate than in previous releases. The updated algorithm requires a modest word
length growth of 3 bits or fewer, which may lead to slight changes in efficiency in simulation.

GPU code generation support for half-precision data types in MATLAB
Function blocks
GPU code generation with GPU Coder™ is now supported for half-precision data types in MATLAB
Function blocks.

New functions and syntax supported for half-precision inputs
These functions and syntaxes now support half-precision inputs:

• flintmax
• realmax
• realmin
• eps('half')
• eps('like',half(1))

For more information, see half and Half Precision Code Generation Support.

fi bitset now supports scalar expansion
Prior to R2022a, fi bitset required that the second and third input arguments be the same size, or
an error would occur.

A = fi(pi);
disp(bin(A))

bit = fi([15,3,8,2]);
C = bitset(A,bit,1);
disp(bin(C))

2-7

https://www.mathworks.com/help/releases/R2022a/matlab/ref/flintmax.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/realmax.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/realmin.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/eps.html
https://www.mathworks.com/help/releases/R2022a/matlab/ref/eps.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/half.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/half-precision-code-generation-support.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ref/embedded.fi.bitset.html

0110010010001000
The Second and third arguments to BITSET must be the same size.

Starting in R2022a, the input arguments A, bit, and V support scalar expansion. That is, if any of A,
bit, or V are nonscalar, the other inputs can be scalar or arrays of the same size.

A = fi(pi);
disp(bin(A))

bit = fi([15,3,8,2]);
C = bitset(A,bit,1);
disp(bin(C))

0110010010001000
0110010010001000 0110010010001100 0110010010001000 0110010010001010

New Fixed-Point Designer Examples
New examples to help you get started with Tikhonov regularization parameter in linear system solver
and matrix factorization blocks:

• Implement Hardware-Efficient Complex Burst Matrix Solve Using QR Decomposition with
Tikhonov Regularization

• Implement Hardware-Efficient Complex Burst Matrix Solve Using Q-less QR Decomposition with
Tikhonov Regularization

• Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using QR Decomposition
with Tikhonov Regularization

• Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Tikhonov Regularization

• Implement Hardware-Efficient Real Burst Matrix Solve Using QR Decomposition with Tikhonov
Regularization

• Implement Hardware-Efficient Real Burst Matrix Solve Using Q-less QR Decomposition with
Tikhonov Regularization

• Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using QR Decomposition with
Tikhonov Regularization

• Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
with Tikhonov Regularization

New examples to help you get started with analytically determining data types for linear system
solver blocks with the Tikhonov regularization parameter:

• Determine Fixed-Point Types for Complex Least-Squares Matrix Solve with Tikhonov
Regularization

• Determine Fixed-Point Types for Complex Q-less QR Matrix Solve with Tikhonov Regularization
• Determine Fixed-Point Types for Real Least-Squares Matrix Solve with Tikhonov Regularization
• Determine Fixed-Point Types for Real Q-less QR Matrix Solve with Tikhonov Regularization

New examples to help you progress with CORDIC algorithms in Simulink:

• Hardware-Efficient Euler Rotations Using CORDIC

R2022a

2-8

https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-complex-burst-matrix-solve-using-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-complex-burst-matrix-solve-using-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-complex-burst-matrix-solve-using-qless-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-complex-burst-matrix-solve-using-qless-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-qless-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-qless-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-real-burst-matrix-solve-using-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-real-burst-matrix-solve-using-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-real-burst-matrix-solve-using-qless-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-real-burst-matrix-solve-using-qless-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-matrix-solve-using-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-matrix-solve-using-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-matrix-solve-using-qless-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-matrix-solve-using-qless-qr-decomposition-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/determine-fixed-point-types-for-complex-least-squares-matrix-solve-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/determine-fixed-point-types-for-complex-least-squares-matrix-solve-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/determine-fixed-point-types-for-complex-qless-qr-matrix-solve-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/determine-fixed-point-types-for-real-least-squares-matrix-solve-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/determine-fixed-point-types-for-real-qless-qr-matrix-solve-with-tikhonov-regularization.html
https://www.mathworks.com/help/releases/R2022a/fixedpoint/ug/hardware-efficient-euler-rotations-using-cordic.html

R2021b

Version: 7.3

New Features

Bug Fixes

Compatibility Considerations

3

Generate native half-precision C code for embedded hardware targets
You can now generate native half-precision C code for embedded hardware targets that natively
support half precision floating-point data types, for example, _Float16 and _fp16 data types for
ARM® compilers. For more information, see Generate Native Half-Precision C Code from Simulink
Models and Generate Native Half-Precision C Code Using MATLAB Coder.

Rapid Accelerator mode support for half-precision floating-point data
types in Simulink
You can now use Rapid Accelerator mode in addition to Normal and Accelerator modes with the half-
precision floating-point data types in Simulink, including MATLAB Function blocks that use half-
precision data types. For more information about features that support half precision, see The Half-
Precision Data Type in Simulink.

Generate an optimized lookup table approximation as a MATLAB
function
You can now use the FunctionApproximation.Problem object to generate an optimized lookup
table approximation as a MATLAB function. To generate MATLAB function, in a
FunctionApproximation.Options object, set the ApproximateSolutionType property to
MATLAB.

The generated MATLAB function is editable and supports C/C++ code generation using MATLAB
Coder™.

Improved numerical accuracy and generated code efficiency for fixed-
point multiplication with slope and bias scaling
Fixed-Point Designer now has improved numerical accuracy for fixed-point multiplication operations
in simulation and generated code. Additionally, generated code is more efficient and more readable.

This improvement is only applied when the configuration parameter Use division for fixed-point net
slope computation is set to On. This improvement applies to fixed-point multiplication operations
where the fixed-point slope is not a power of 2 and for non-zero bias when simplicity and accuracy
conditions are met.

Compatibility Considerations
Numerical outputs and generated code for fixed-point multiplication operations may differ from
previous releases when the Use division for fixed-point net slope computation parameter is set
to On.

Improved numerical accuracy and generated code efficiency for fixed-
point division with slope and bias scaling
Fixed-Point Designer now has improved numerical accuracy for fixed-point division in simulation and
generated code. Additionally, generated code is more efficient and more readable.

R2021b

3-2

https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/generate-native-half-precision-c-code-from-simulink-models.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/generate-native-half-precision-c-code-from-simulink-models.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/generate-native-half-precision-c-code-using-matlab-coder.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/half-precision-in-simulink.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/half-precision-in-simulink.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/functionapproximation.problem-class.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2021b/simulink/gui/use-division-for-fixed-point-net-slope-computation.html
https://www.mathworks.com/help/releases/R2021b/simulink/gui/use-division-for-fixed-point-net-slope-computation.html

This improvement applies to fixed-point division operations where the fixed-point slope is not a power
of 2 and for non-zero bias when simplicity and accuracy conditions are met.

Compatibility Considerations
Numerical outputs and generated code may differ from previous releases for fixed-point division
operations where the fixed-point slope is not a power of 2 and for non-zero bias.

Implicit Expansion: For fi plus, minus, and times, automatically
expand dimensions of length 1
The functions plus, minus, and times now support implicit expansion with fi inputs.

Implicit expansion is a generalization of scalar expansion. With scalar expansion, a scalar expands to
the same size as another array to facilitate element-wise operations. With implicit expansion, the
functions listed above can implicitly expand their inputs to the same size as long as the arrays have
compatible sizes. Two arrays have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of them is 1. See Compatible Array Sizes for Basic Operations.

Fixed-Point Tool: Pause and resume data type optimization search,
import fxpOptimizationOptions object, and guided workflow selection
Pause and resume data type optimization search

The Optimized Fixed-Point Conversion workflow in the Fixed-Point Tool now allows you to
pause the optimization solver before the optimization search is complete. Any solutions found before
the optimization process pauses are immediately available for use. You can resume the optimization
search from where you left off, using the same or expanded search criteria.

Fixed-Point Tool: Import fxpOptimizationOptions object

The Optimized Fixed-Point Conversion workflow in the Fixed-Point Tool now has Advanced
Options in the setup pane that allow you to import a fxpOptimizationOptions object from the
base workspace. Importing a fxpOptimizationOptions object allows you access to all available
optimization options and allows you to save and reuse a set of options.

3-3

https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/embedded.fi.plus.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/embedded.fi.minus.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/embedded.fi.times.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/embedded.fi.html
https://www.mathworks.com/help/releases/R2021b/matlab/matlab_prog/compatible-array-sizes-for-basic-operations.html

Fixed-Point Tool provides guided workflow selection

On start-up, the Fixed-Point Tool now provides additional information to help you select the best
workflow for your application.

Data Type Optimization: Restrict instrumentation to a subsystem,
enforce known data types, maintain model parameter settings, and
warn about unsupported constructs
Restrict instrumentation to a subsystem

During the range collection step of optimization, fxpopt instruments the model in order to log
minimum, maximum, and overflow data during simulation. If your application does not require
instrumenting of the full model, restricting instrumentation to a subsystem can reduce the time
required to run the optimization solver.

To restrict instrumentation to a subsystem, use the InstrumentationContext property of the
fxpOptimizationOptions object to specify the subsystem to use for instrumentation and range
collection.

options.AdvancedOptions.InstrumentationContext = [model '/Subsystem'];

The subsystem must be under the top-level model and contain the system under design.

Enforce known data types for variables in a system

You can now use the addSpecification function to specify known data types for variables within
your system in addition to being able to specify known data types for block parameters. For example,
specify the data type for the parameter myParam using a Simulink.Simulation.Variable object,
then add this specification to the fxpOptimizationOptions object, opt.

myParam = Simulink.Parameter(2); % a parameter used in the model
myParamCopy = copy(myParam); % make a copy of the parameter

R2021b

3-4

https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fxpopt.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fxpoptimizationoptions-class.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fxpoptimizationoptions.addspecification.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/simulink.simulation.variable-class.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fxpoptimizationoptions-class.html

myParamCopy.DataType = 'single'; % set the data type to a new value
var = Simulink.Simulation.Variable('myParam',myParamCopy); % create a variable
options = fxpOptimizationOptions();
addSpecification(options,'Variable',var);

Maintain original values of model parameters that are altered by fxpopt

During the optimization process, fxpopt changes several model configuration parameters, as
described in Model Configuration Changes Made During Data Type Optimization. Use the
KeepOriginalModelParameters option of explore to maintain the original values of model
parameters.

explore(result,'KeepOriginalModelParameters',true)

Warn about unsupported constructs

You can now choose to display a warning message when fxpopt encounters blocks that are not
supported for data type conversion, in addition to the existing options to isolate or error. To warn for
unsupported constructs, set the HandleUnsupported property of the fxpOptimizationOptions
object to 'Warn'.

options.AdvancedOptions.HandleUnsupported = 'Warn';

fxpopt will warn when the system contains blocks that are not supported for fixed-point conversion.
Unsupported constructs are ignored and data type optimization continues. This option allows you to
replace unsupported constructs with other solutions, such as lookup tables, after optimization is
complete.

Analytically determine fixed-point data types when solving linear
systems of equations
Fixed-Point Designer has a new set of functions to help you select fixed-point data types for linear
least-squares matrix factorizations and linear system solvers.

These functions are designed to be used with blocks in the Fixed-Point Designer HDL Support >
Linear System Solvers and Fixed-Point Designer HDL Support > Matrix Factorizations
libraries.

To compute data types for matrix factorizations, use:

• fixed.qrFixedpointTypes
• fixed.qlessqrFixedpointTypes

To compute data types for linear system solvers, use:

• fixed.realQRMatrixSolveFixedpointTypes
• fixed.complexQRMatrixSolveFixedpointTypes
• fixed.realQlessQRMatrixSolveFixedpointTypes
• fixed.complexQlessQRMatrixSolveFixedpointTypes
• fixed.realSingularValueLowerBound
• fixed.complexSingularValueLowerBound

To compute the forgetting factor, use:

3-5

https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/model-configuration-changes-made-during-data-type-optimization.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/optimizationresult.explore.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fxpopt.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fxpoptimizationoptions-class.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.qrfixedpointtypes.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.qlessqrfixedpointtypes.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.realqrmatrixsolvefixedpointtypes.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.complexqrmatrixsolvefixedpointtypes.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.realqlessqrmatrixsolvefixedpointtypes.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.complexqlessqrmatrixsolvefixedpointtypes.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.realsingularvaluelowerbound.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.complexsingularvaluelowerbound.html

• fixed.forgettingFactor
• fixed.forgettingFactorInverse

To compute the quantization noise standard deviation, use:

• fixed.realQuantizationNoiseStandardDeviation
• fixed.complexQuantizationNoiseStandardDeviation

fixed.cordicDivide and fixed.cordicReciprocal Functions: Fixed-point
divide and reciprocal using CORDIC
Use fixed.cordicDivide to perform division using a CORDIC algorithm. Use
fixed.cordicReciprocal to compute the reciprocal using a CORDIC algorithm. The outputs of
these functions are numerically equivalent to the output of the blocks Real Divide HDL Optimized and
Complex Divide HDL Optimized, and Real Reciprocal HDL Optimized, respectively.

These functions support C/C++ code generation using MATLAB Coder.

New functions supported for half-precision inputs
The following functions now have improved support for half-precision inputs:

• cumsum — Supported for simulation in MATLAB
• issorted — Supported for simulation in MATLAB
• log2 — Two-output syntax supported for simulation in MATLAB
• sort — Supported for simulation in MATLAB

For more information, see half and Half Precision Code Generation Support.

fi support for dec2base, dec2bin, and dec2hex
The functions dec2base, dec2bin, and dec2hex now support fi inputs. Use these functions to
convert the real-world value of a fi object to base-n, binary, or hexadecimal representation. For more
information, see dec2base, dec2bin, and dec2hex.

Data Type Optimization: Specify multiple types of tolerances
You can now specify multiple types of tolerances using the addTolerance function.

addTolerance(options,'model/blockPath',1,'AbsTol',5e-2,'RelTol',1e-2);

Compatibility Considerations
In previous releases, you specified options for logging information with a
Simulink.SimulationData.LoggingInfo object as:

addTolerance(options,blockPath,portIndex,tolType,tolValue,logInfo)

You must now specify logging information as a name-value argument:

R2021b

3-6

https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.forgettingfactor.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.forgettingfactorinverse.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.realquantizationnoisestandarddeviation.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.complexquantizationnoisestandarddeviation.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.cordicdivide.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fixed.cordicreciprocal.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/realdividehdloptimized.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/complexdividehdloptimized.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/realreciprocalhdloptimized.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/cumsum.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/issorted.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/log2.html
https://www.mathworks.com/help/releases/R2021b/matlab/ref/sort.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/half.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/half-precision-code-generation-support.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/embedded.fi.dec2base.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/embedded.fi.dec2bin.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/embedded.fi.dec2hex.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/fxpoptimizationoptions.addtolerance.html

addTolerance(options,blockPath,portIndex,tolType,tolValue,'LoggingInfo',logInfo)

New Fixed-Point Designer Examples
New examples to help you get started with blocks in the Fixed-Point Designer HDL Support >
Linear System Solvers library:

• Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using Q-less QR
Decomposition with Forgetting Factor

• Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
with Forgetting Factor

New examples to help you get started with blocks in the Fixed-Point Designer HDL Support >
Matrix Factorizations library:

• Implement Hardware-Efficient Complex Partial-Systolic Q-less QR with Forgetting Factor
• Implement Hardware-Efficient Real Partial-Systolic Q-less QR with Forgetting Factor

New examples to help you get started with analytically determining fixed-point data types when
solving linear systems of equations:

• Determine Fixed-Point Types for QR Decomposition
• Determine Fixed-Point Types for Q-less QR Decomposition
• Algorithms to Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B
• Determine Fixed-Point Types for Complex Q-less QR Matrix Solve A'AX=B
• Algorithms to Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B
• Determine Fixed-Point Types for Complex Least-Squares Matrix Solve AX=B
• Algorithms to Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B
• Determine Fixed-Point Types for Real Q-less QR Matrix Solve A'AX=B
• Algorithms to Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B
• Determine Fixed-Point Types for Real Least-Squares Matrix Solve AX=B
• Compute Forgetting Factor Required for Streaming Input Data
• Estimate Standard Deviation of Quantization Noise of Complex-Valued Signal
• Estimate Standard Deviation of Quantization Noise of Real-Valued Signal

New examples to help you progress with lookup table optimization:

• Generate an Optimized Lookup Table as a MATLAB Function
• Generate an Optimized Lookup Table as a MATLAB Function Programmatically
• Optimize Lookup Tables for Periodic Functions

Functionality being removed or changed
Change in default behavior of quantizenumeric for complex input
Behavior change

In previous releases, quantizenumeric would remove the imaginary part of a complex input x. For
example,

3-7

https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-q-less-qr-decomposition-with-forgetting-factor.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-q-less-qr-decomposition-with-forgetting-factor.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-matrix-solve-using-q-less-qr-decomposition-with-forgetting-factor.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-matrix-solve-using-q-less-qr-decomposition-with-forgetting-factor.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-q-less-qr-with-forgetting-factor.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-q-less-qr-with-forgetting-factor.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/determine-fixed-point-types-for-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/determine-fixed-point-types-for-q-less-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/algorithms-to-determine-fixed-point-types-for-complex-q-less-qr-matrix-solve.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/determine-fixed-point-types-for-complex-q-less-qr-matrix-solve.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/algorithms-to-determine-fixed-point-types-for-complex-least-squares-matrix-solve.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/determine-fixed-point-types-for-complex-least-squares-matrix-solve.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/algorithms-to-determine-fixed-point-types-for-real-q-less-qr-matrix-solve.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/determine-fixed-point-types-for-real-q-less-qr-matrix-solve.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/algorithms-to-determine-fixed-point-types-for-real-least-squares-matrix-solve.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/determine-fixed-point-types-for-real-least-squares-matrix-solve.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/compute-forgetting-factor-required-for-streaming-input-data.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/estimate-standard-deviation-of-quantization-noise-of-complex-valued-signal.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/estimate-standard-deviation-of-quantization-noise-of-real-valued-signal.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/generate-an-optimized-lookup-table-as-a-matlab-function.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/generate-an-optimized-lookup-table-as-a-matlab-function-programmatically.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ug/optimize-lookup-tables-for-periodic-functions.html
https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/embedded.fi.quantizenumeric.html

x = complex(pi, exp(1))
y = quantizenumeric(x,1,16,12,'floor')

x =

 3.1416 + 2.7183i

y =

 3.1414

quantizenumeric now preserves the imaginary part in the same way that other quantize functions
behave for complex inputs. For example,

x = complex(pi, exp(1))
y = quantizenumeric(x,1,16,12,'floor')

x =

 3.1416 + 2.7183i

y =

 3.1414 + 2.7183i

Change in rounding behavior for quantize function
Behavior change

In previous releases, quantize would round to infinity for values in the range realmax < input <
realmax + 0.5*eps(realmax) and negative infinity for values in the range -realmax > x > -
realmax - 0.5*eps. Starting in R2021b, values in these ranges quantize as follows, depending on
the rounding method used.

Rounding Method Values in the range realmax
< input < realmax +
0.5*eps(realmax) round to

Values in the range -realmax
> x > -realmax - 0.5*eps
round to

floor realmax (for x < realmax +
eps)

-Inf

ceil Inf -realmax (for x > -realmax
- eps)

round realmax -realmax
convergent realmax -realmax
fix realmax (for x < realmax +

eps)
-realmax (for x > -realmax
- eps)

nearest realmax -realmax

R2021b

3-8

https://www.mathworks.com/help/releases/R2021b/fixedpoint/ref/embedded.quantizer.quantize.html

R2021a

Version: 7.2

New Features

Bug Fixes

Compatibility Considerations

4

Half-precision data type support for MATLAB Function blocks
MATLAB Function blocks can now use 16-bit half-precision floating-point type data. For more
information, see Floating-Point Numbers.

New HDL-optimized Simulink blocks for reciprocal, divide, and modulo
Starting in R2021a, Fixed-Point Designer has additional Simulink blocks for performing reciprocal,
division and modulo operations:

• Complex Divide HDL Optimized
• Real Divide HDL Optimized
• Real Reciprocal HDL Optimized
• Divide by Constant HDL Optimized
• Modulo by Constant HDL Optimized

These blocks use hardware-friendly control signals and provide an efficient hardware
implementation. These blocks support HDL code generation using HDL Coder.

New Simulink blocks and MATLAB functions for divide and modulo
Starting in R2021a, Fixed-Point Designer has additional Simulink blocks:

• Divide by Constant and Round
• Modulo by Constant

and MATLAB functions:

• ceilDiv
• fixDiv
• floorDiv
• nearestDiv
• modByConstant

for performing division and modulo operations.

These blocks and functions compute division via a multiplication by inverse, which generally results
in better performance on embedded systems.

Improved numerical accuracy and generated code efficiency for cast
operations
Fixed-Point Designer now has improved numerical accuracy for cast operations in simulation and
generated code. Additionally, generated code is more efficient and more readable.

This improvement is only applied when the configuration parameter Use division for fixed-point net
slope computation is set to On.

R2021a

4-2

https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/floating-point-numbers.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/complexdividehdloptimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/realdividehdloptimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/realreciprocalhdloptimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/dividebyconstanthdloptimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/modulobyconstanthdloptimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/dividebyconstantandround.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/modulobyconstant.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/ceildiv.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/fixdiv.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/floordiv.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/nearestdiv.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/modbyconstant.html
https://www.mathworks.com/help/releases/R2021a/simulink/gui/use-division-for-fixed-point-net-slope-computation.html
https://www.mathworks.com/help/releases/R2021a/simulink/gui/use-division-for-fixed-point-net-slope-computation.html

Generate optimized one-dimensional lookup tables for HDL
applications
In R2021a, you can use lookup table optimization to generate a subsystem consisting of a prelookup
step followed by interpolation that functions as a lookup table with explicit pipelining to generate
efficient HDL code. To generate an HDL-optimized lookup table, use the
FunctionApproximation.Options class:

problem.Options.HDLOptimized = true;

To generate an HDL-optimized approximate, the function to approximate must be one-dimensional
and BreakpointSpecification must be set to EvenSpacing or EvenPow2Spacing.

New Fixed-Point Designer Examples
New examples to help you get started with blocks in the Fixed-Point Designer HDL Support >
Math Operations library:

• Implement Hardware-Efficient Real Divide HDL Optimized
• Implement Hardware-Efficient Complex Divide HDL Optimized
• Implement HDL Optimized Modulo By Constant

New examples to help you get started with blocks in the Fixed-Point Designer HDL Support >
Linear System Solvers library:

• Implement Hardware-Efficient Real Burst Matrix Solve Using QR Decomposition
• Implement Hardware-Efficient Real Burst Matrix Solve Using Q-less QR Decomposition
• Implement Hardware-Efficient Complex Burst Matrix Solve Using QR Decomposition
• Implement Hardware-Efficient Complex Burst Matrix Solve Using Q-less QR Decomposition
• Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using QR Decomposition
• Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using QR Decomposition with

Diagonal Loading
• Implement Hardware-Efficient Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
• Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using QR Decomposition
• Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using QR Decomposition

with Diagonal Loading
• Implement Hardware-Efficient Complex Partial-Systolic Matrix Solve Using Q-less QR

Decomposition

New examples to help you get started with blocks in the Fixed-Point Designer HDL Support >
Matrix Factorizations library:

• Implement Hardware-Efficient Real Burst QR Decomposition
• Implement Hardware-Efficient Real Burst Q-less QR Decomposition
• Implement Hardware-Efficient Complex Burst QR Decomposition
• Implement Hardware-Efficient Complex Burst Q-less QR Decomposition
• Implement Hardware-Efficient Real Partial-Systolic QR Decomposition

4-3

https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-divide-hdl-optimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-divide-hdl-optimized.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hdl-optimized-modulo-by-constant.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-burst-matrix-solve-using-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-burst-matrix-solve-using-q-less-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-burst-matrix-solve-using-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-burst-matrix-solve-using-q-less-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-matrix-solve-using-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-matrix-solve-using-qr-decomposition-with-diagonal-loading.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-matrix-solve-using-qr-decomposition-with-diagonal-loading.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-matrix-solve-using-q-less-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-qr-decomposition-with-diagonal-loading.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-qr-decomposition-with-diagonal-loading.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-q-less-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-matrix-solve-using-q-less-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-burst-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-burst-q-less-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-burst-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-burst-q-less-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-qr-decomposition.html

• Implement Hardware-Efficient Real Partial-Systolic Q-less QR Decomposition
• Implement Hardware-Efficient Complex Partial-Systolic QR Decomposition
• Implement Hardware-Efficient Complex Partial-Systolic Q-less QR Decomposition

New examples to help you progress with data type optimization:

• Perform Data Type Optimization with Custom Behavioral Constraints

New examples to help you progress with the Fixed-Point Tool:

• Use Custom Data Type Override Settings for Range Collection

Reduced HDL resource utilization in fixed-point matrix library blocks
In R2021a, blocks in the Fixed-Point Designer HDL Optimized > Matrices and Linear Algebra
library that operate on complex inputs have improved algorithms to reduce resource utilization on
hardware-constrained target platforms.

fixed.extractNumericType function: Extract numeric type of input
Use the fixed.extractNumericType function to extract the numeric type from an input numeric
value, or from an input that specifies a numeric type. The numeric type is returned as an
embedded.numerictype object. For more information, see fixed.extractNumericType.

Generate C++ code for half-precision floating-point data types in
Simulink
You can now generate C++ code for the half-precision floating-point data type in Simulink. For more
information about features that support half-precision, see The Half-Precision Data Type in Simulink.

Control inherited block output data type for half-precision
You can now control the output data type of blocks that support the half-precision data type and that
support the 'Inherit via Internal Rule' block output data type. To set the data type rule, go
to Configuration Parameters > Math and Data Types > Inherit floating-point output type
smaller than single precision. For more information, see Inherit floating-point output type smaller
than single precision.

Fixed-Point Tool: View optimization details, visualize data types, and
manually stop optimization
View optimization details in the Fixed-Point Tool

Prior to R2021a, details of the optimization process were printed to the MATLAB Command Window.
You can now view this information in the Optimized Fixed-Point Conversion workflow of the
Fixed-Point Tool. In the Workflow Browser pane, during data type optimization or after the
optimization process has terminated, select Optimization Details.

R2021a

4-4

https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-real-partial-systolic-q-less-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/implement-hardware-efficient-complex-partial-systolic-q-less-qr-decomposition.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/perform-data-type-optimization-with-custom-behavioral-constraints.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/use-custom-data-type-override-settings-for-range-collection.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/fixed.extractnumerictype.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ug/half-precision-in-simulink.html
https://www.mathworks.com/help/releases/R2021a/simulink/gui/inherit-floating-point-output-type-smaller-than-single-precision.html
https://www.mathworks.com/help/releases/R2021a/simulink/gui/inherit-floating-point-output-type-smaller-than-single-precision.html

Data type visualizer: Understand and analyze optimized data types by viewing histograms
of the dynamic ranges of signals in your model

In the Optimized Fixed-Point Conversion workflow in the Fixed-Point Tool, you can now view a
summary of the ranges of objects in your model and histograms of the bits used by each object. This
data is collected during the range collection phase of optimization.

Use this data type visualization to see a summary of the ranges of objects in your model and to
quickly spot sources of overflows and underflows and inefficient data types.

4-5

Stop data type optimization

The Optimized Fixed-Point Conversion workflow in the Fixed-Point Tool now allows you to
stop the optimization solver before the optimization search is complete. Any solutions found before
the optimization process terminates remain available for use.

Lookup table optimization support for functions with scalar inputs
Previously, the FunctionApproximation.Problem class required that functions and function
handles to approximate were vectorized, meaning that for each input, there is exactly one output.
Starting in R2021a, lookup table optimization fully supports approximation of Simulink blocks and
subsystems that only allow scalar inputs.

Improved lookup table value optimization
In R2021a, the Lookup Table Optimizer has an improved algorithm for lookup table value
optimization for the Flat and Nearest interpolation methods when off-curve table values are
allowed. This enhancement can enable faster completion of the lookup table optimization process and
improved memory reduction of the optimized lookup table.

Improved numerical accuracy and generated code efficiency for fi
inputs to power, .^
Fixed-Point Designer now has improved numerical accuracy for fixed-point inputs to power, .^ in
simulation and generated code. Additionally, generated code is more efficient.

R2021a

4-6

https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/functionapproximation.problem-class.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/embedded.fi.power.html

Data type optimization workflow improvements
Override data types with scaled doubles

Using the fxpOptimizationOptions object, you can now override data types in a model with
scaled doubles.

options.AdvancedOptions.DataTypeOverride = 'ScaledDouble';

Log a reduced set of data points

Using the addTolerance method of the fxpOptimizationOptions object, you can now control the
amount of data logged by the Simulation Data Inspector by specifying a decimation factor.

logInfo = Simulink.SimulationData.LoggingInfo();
logInfo.DecimateData = true;
logInfo.Decimation = 10;
addTolerance(options, 'model/blockPath', 2, 'AbsTol', 1, logInfo);

Stop optimization in Lookup Table Optimizer app
You can now stop the optimization solver in the Lookup Table Optimizer before the optimization
search is complete. The app will choose the best solution found at the time the Stop button is
selected and display it in the app.

New Fixed-Point Designer Simulink block library
The Fixed-Point Designer Simulink block library has been split. Blocks in the Fixed-Point Designer
HDL Support library use hardware-friendly control signals and provide an efficient hardware
implementation. These blocks support HDL code generation using HDL Coder. Blocks in the Fixed-
Point Designer library are not optimized for HDL applications.

Functionality being removed or changed
Inexact property names for fi, fimath, and numerictype objects not supported

In previous releases, inexact property names for fi, fimath, and numerictype objects would result
in a warning. In R2021a, support for inexact property names was removed. Use exact property names
instead.

4-7

https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/fxpoptimizationoptions-class.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/fxpoptimizationoptions.addtolerance.html
https://www.mathworks.com/help/releases/R2021a/fixedpoint/ref/fxpoptimizationoptions-class.html

R2020b

Version: 7.1

New Features

Bug Fixes

Compatibility Considerations

5

Half Precision in Simulink: Design, simulate, and generate code for
half-precision systems
Signals and block outputs can now specify a half-precision data type. The half-precision data type is
supported for simulation and code generation for parameters and a subset of blocks, including
Lookup Table blocks.

For more information about half-precision in Simulink, see The Half-Precision Data Type in Simulink.

Expanded half-precision support for Deep Learning Toolbox and FFT
functions
The following MATLAB functions now support half-precision inputs.

• fft
• fft2
• fftn
• fftshift
• ifft
• ifft2
• ifftn
• ifftshift
• permute

The following Deep Learning Toolbox™ functions now support half-precision inputs.

• activations
• classify
• predict
• predictAndUpdateState

For more information on the half-precision data type in MATLAB, see half.

Explore half precision in optimized lookup tables
The new ExploreHalf property of the FunctionApproximation.Options object allows you to
specify whether the optimization process explores half-precision data types for table data and
breakpoint values. The default property value of this property is true. If you specify false, the
optimizer does not explore half precision.

options = FunctionApproximation.Options('ExploreHalf',true);

You can also access this property in the Lookup Table Optimizer.

New API functions for half-precision data type support in user-written
S-functions
To create S-function blocks that work with half-precision data types, use these new functions:

R2020b

5-2

https://www.mathworks.com/help/releases/R2020b/fixedpoint/ug/half-precision-in-simulink_mw_2357bdbb-cd05-4efd-a5c4-e8efaba14e5e.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/fft.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/fft2.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/fftn.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/fftshift.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/ifft.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/ifft2.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/ifftn.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/ifftshift.html
https://www.mathworks.com/help/releases/R2020b/matlab/ref/permute.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/seriesnetwork.activations.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/seriesnetwork.classify.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/autoencoder.predict.html
https://www.mathworks.com/help/releases/R2020b/deeplearning/ref/predictandupdatestate.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/half.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/lookuptableoptimizer.html

• ssGetDataTypeIsDoubleSingleorHalf — Determine whether registered data type is double,
single, or half-precision data type.

• ssGetDataTypeIsHalfPrecision — Determine whether registered data type is half-precision
data type.

• ssRegisterDataTypeHalfPrecision — Register half-precision data type and return its data
type ID.

New QR decomposition and matrix solve Simulink blocks
Fixed-Point Designer now has additional Simulink blocks for matrix operations. These blocks use a
partial-systolic implementation and have hardware-friendly control signals that provide an efficient
hardware implementation. These blocks support HDL code generation using HDL Coder.

Linear System Solvers

• Real Partial-Systolic Matrix Solve Using QR Decomposition
• Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition
• Real Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor
• Complex Partial-Systolic Matrix Solve Using QR Decomposition
• Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition
• Complex Partial-Systolic Matrix Solve Using Q-less QR Decomposition with Forgetting Factor

Matrix Factorization

• Real Partial-Systolic QR Decomposition
• Real Partial-Systolic Q-less QR Decomposition
• Real Partial-Systolic Q-less QR Decomposition with Forgetting Factor
• Complex Partial-Systolic QR Decomposition
• Complex Partial-Systolic Q-less QR Decomposition
• Complex Partial-Systolic Q-less QR Decomposition with Forgetting Factor

New QR decomposition and matrix solve MATLAB functions
Fixed-Point Designer now has additional functions for matrix QR factorization and solving linear
systems of equations. To learn more about these functions, see the following links.

• fixed.backwardSubstitute
• fixed.forwardSubstitute
• fixed.qlessQR
• fixed.qlessQRUpdate
• fixed.qrAB
• fixed.qrMatrixSolve
• fixed.qlessQRMatrixSolve

5-3

https://www.mathworks.com/help/releases/R2020b/fixedpoint/ug/ssgetdatatypeisdoublesingleorhalf.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ug/ssgetdatatypeishalfprecision.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ug/ssregisterdatatypehalfprecision.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/realpartialsystolicmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/realpartialsystolicmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/realpartialsystolicmatrixsolveusingqlessqrdecompositionwithforgettingfactor.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/complexpartialsystolicmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/complexpartialsystolicmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/complexpartialsystolicmatrixsolveusingqlessqrdecompositionwithforgettingfactor.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/realpartialsystolicqrdecomposition.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/realpartialsystolicqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/realpartialsystolicqlessqrdecompositionwithforgettingfactor.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/complexpartialsystolicqrdecomposition.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/complexpartialsystolicqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/complexpartialsystolicqlessqrdecompositionwithforgettingfactor.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fixed.backwardsubstitute.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fixed.forwardsubstitute.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fixed.qlessqr.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fixed.qlessqrupdate.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fixed.qrab.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fixed.qrmatrixsolve.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fixed.qlessqrmatrixsolve.html

Optimize data types based on operator counts
The fxpopt function now supports data type optimization that minimizes an estimated count of
operators in generated code. This results in a lower program memory size for C code generated from
Simulink models.

By default, fxpopt minimizes the total bit width. To minimize operator counts during optimization,
set the 'ObjectiveFunction' property of the fxpOptimizationOptions object to
'OperatorCount'.

opt = fxpOptimizationOptions('ObjectiveFunction','OperatorCount');

In the Fixed-Point Tool Optimized Fixed-Point Conversion workflow, expand the Settings
menu to choose which objective function to use for optimization.

R2020b

5-4

https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fxpopt.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fxpoptimizationoptions-class.html

Export optimization workflow steps to a MATLAB script
In the Optimized Fixed-Point Conversion workflow of the Fixed-Point Tool, you can now use
the Export Script button to export optimization workflow steps, including optimization options and
signal tolerances, to a MATLAB script.

Automatically propagate slope-bias data types during data type
optimization
The fxpopt function can now propagate slope-bias data types from outside the system under design.
The optimizer chooses slopes and biases that reduce the complexity of generated code.

To allow slope-bias data type propagation during optimization, set the
PerformSlopeBiasCancellation property of the fxpOptimizationOptions object to true.

options.AdvancedOptions.PerformSlopeBiasCancellation = true;

Data type optimization workflow improvements
Automatically isolate constructs not supported for fixed-point conversion

You can now automatically isolate blocks that are not supported for fixed-point conversion. After
optimization, you can choose to replace these constructs with a lookup table, CORDIC
implementation, or other solution.

To surround unsupported constructs with Data Type Conversion blocks, set the HandleUnsupported
property of the fxpOptimizationOptions object to 'Isolate'.

options.AdvancedOptions.HandleUnsupported = 'Isolate';

Override data types in range collection step of optimization

Using the fxpOptimizationOptions object, you can now override data types in the model when
collecting ranges used to optimize data types.

The optimization process collects ranges through simulation, static range analysis, and design ranges
specified on a model and finds an optimal data type based on the union of all ranges. When you
specify a data type override, the software overrides all data types in the model with singles or
doubles during the range collection step of optimization. For example, to override all data types with
doubles, set the DataTypeOverride property of the fxpOptimizationOptions object to
'Double'.

options.AdvancedOptions.DataTypeOverride = 'Double';

5-5

https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fxpopt.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fxpoptimizationoptions-class.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fxpoptimizationoptions-class.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fxpoptimizationoptions-class.html

Inspect optimization solutions using Simulation Manager

You can now inspect solutions found during optimization in Simulation Manager.

After using the fxpopt function to optimize the data types in your model, you can inspect the
solutions found during optimization in Simulation Manager using the openSimulationManager
function.

Functionality being removed or changed
Change in default behavior of fi for -Inf, Inf, and NaN
Behavior change

In previous releases, fi would return an error when passed the non-finite values -Inf, Inf, or NaN.

In R2020b, when fi is specified as a fixed-point numeric type,

• NaN maps to 0.
• When the 'OverflowAction' property of the fi object is set to 'Wrap', -Inf, and Inf map to

0.
• When the 'OverflowAction' property of the fi object is set to 'Saturate', Inf maps to the

largest representable value, and -Inf maps to the smallest representable value.

Best-precision scaling is not supported for input values of -Inf, Inf, or NaN.

Change in default data type override in the Fixed-Point Tool
Behavior change

In previous releases, when you clicked the Collect Ranges button in the Iterative Fixed-Point
Conversion or Range Collection workflows in the Fixed-Point Tool, the tool would by default
override data types in the model with doubles.

In R2020b, the default behavior for the Collect Ranges button is set to Use current settings,
which maintains the current data type override set on the model.

R2020b

5-6

https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/fxpopt.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/opimizationresult.opensimulationmanager.html
https://www.mathworks.com/help/releases/R2020b/fixedpoint/ref/embedded.fi.html

R2020a

Version: 7.0

New Features

Bug Fixes

Compatibility Considerations

6

Half Precision: Design, simulate, and generate code for half-precision
systems
Half precision code generation in MATLAB

You can now generate C, C++, and GPU code for half-precision floating-point data types in MATLAB.
The half-precision data type occupies only 16 bits of memory, but its floating-point representation
enables it to handle wider dynamic ranges than integer or fixed-point data types of the same size.

For more information about features that support half-precision, see half.

Tech Preview: Half precision in Simulink

Beginning in R2020a, signals and block outputs can now specify a half-precision data type. The half-
precision data type is supported for simulation and code generation for parameters and a subset of
blocks, including Lookup Table blocks.

This feature is under tech preview and should not be used for production code generation. For more
information on supported features, see Half-Precision in Simulink.

Fixed-Point Tool: Convert and optimize data types, and explore ranges
You can now select between three workflows in the Fixed-Point Tool. To get started, open the Fixed-
Point Tool from the Apps menu in Simulink. In the Fixed-Point Tool, click the New button and select
one of the following workflows:

• Optimized Fixed-Point Conversion - Optimize the data types of a system to use the
minimum cost while meeting system behavior requirements.

• Iterative Fixed-Point Conversion - Convert a system to fixed point based on simulation,
derived, or design ranges. Adjust data type proposal settings and visualize their effects until
system meets your requirements.

• Range Collection - Debug the behavior of a model and pinpoint numerical issues by visualizing
ranges.

New Fixed-Point Designer Simulink block library
Fixed-Point Designer now has a Simulink block library for math operations and matrix operations.
These blocks use hardware-friendly control signals and provide an efficient hardware
implementation. These blocks support HDL code generation using HDL Coder.

Math Operations

Use the Hyperbolic Tangent HDL Optimized block to compute the CORDIC-based hyperbolic tangent.

Use the Normalized Reciprocal HDL Optimized block to compute the normalized reciprocal of an
input value.

Matrix Operations

The Real Burst QR Decomposition and Complex Burst QR Decomposition blocks use Givens rotations
to compute the QR decomposition of an input matrix.

R2020a

6-2

https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/half.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ug/half-precision-in-simulink.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/hyperbolictangenthdloptimized.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/normalizedreciprocalhdloptimized.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/realburstqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstqrdecomposition.html

Use the Real Burst Matrix Solve Using QR Decomposition or Complex Burst Matrix Solve Using QR
Decomposition blocks to compute the value of x in the equation Ax = b.

The Real Burst Q-less QR Decomposition and Complex Burst Q-less QR Decomposition blocks use
Givens rotations to compute the R factor of the QR decomposition without computing Q.

Use the Real Burst Matrix Solve Using Q-less QR Decomposition or Complex Burst Matrix Solve
Using Q-less QR Decomposition blocks to compute the value of x in the equation A'Ax = b.

Lookup Table Optimization: Iterative redesign and batch compression
of lookup tables, parallelization of lookup table optimization
Iteratively redesign lookup tables in your model

The Lookup Table Optimizer now replaces blocks being approximated by a lookup table with a
variant subsystem containing the function approximation. The variant subsystem enables you to
return to the original function and perform the optimization again using different optimization
settings and constraints.

Automatically compress all lookup tables in a system

Use the FunctionApproximation.compressLookupTables function to locate and optimize all
lookup tables in a specified system. FunctionApproximation.compressLookupTables performs
a lossless compression of all supported lookup table blocks in a specified subsystem and reports the
memory savings.

Parallelized lookup table optimization

The new UseParallel property of the FunctionApproximation.Options object allows you to
specify whether to run iterations of the optimization in parallel. The default property value of this
property is false. Running iterations in parallel requires a Parallel Computing Toolbox™ license. If
you do not have a Parallel Computing Toolbox license, or if you specify false, the iterations run in
serial.

Data Type Optimization: Specify a safety margin, enforce known data
types, and other enhancements
Review all changes made during optimization

Use the contents function to get a summary of all changes made to your model during optimization.

For example, after optimizing the model used in the Optimize Data Types Using Multiple Simulation
Scenarios example, you can see a summary of model parameters and data types that are changed.

result = fxpopt(model,sud,opt);
contents(result.Solutions(3))

ModelName: 'ex_auto_gain_controller'

 ModelParameters:
 Index Name Value
 _____ __________________________ _____________

 1 SignalLogging 'on'

6-3

https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/realburstmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/realburstqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/realburstmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/complexburstmatrixsolveusingqlessqrdecomposition.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/lookuptableoptimizer.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/functionapproximation.compresslookuptables.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/functionapproximation.compresslookuptables.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/optimizationsolution.contents.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ug/optimize-data-types-using-multiple-simulation-scenarios.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ug/optimize-data-types-using-multiple-simulation-scenarios.html

 2 ReturnWorkspaceOutputs 'on'
 3 SaveFormat 'Dataset'
 4 ShowPortDataTypes 'on'
 5 SignalRangeChecking 'error'
 6 ParameterDowncastMsg 'none'
 7 ParameterUnderflowMsg 'none'
 8 ParameterPrecisionLossMsg 'none'
 9 ParameterOverflowMsg 'none'
 10 FixptConstPrecisionLossMsg 'none'
 11 FixptConstOverflowMsg 'none'
 12 FixptConstUnderflowMsg 'none'
 13 IntegerOverflowMsg 'none'
 14 IntegerSaturationMsg 'none'
 15 SaveTime 'off'
 16 SaveOutput 'off'
 17 SimulationMode 'accelerator'

 BlockParameters:
 Index Name BlockPath Value
 _____ ________________ _____________________________________ ________________

 1 OutDataTypeStr ex_auto_gain_controller/input_signal 'fixdt(1,17,15)'
 2 OutDataTypeStr ex_auto_gain_controller/sud/x 'fixdt(1,17,15)'
 3 OutDataTypeStr ex_auto_gain_controller/sud/Product 'fixdt(1,11,6)'
 4 OutDataTypeStr ex_auto_gain_controller/sud/y 'fixdt(1,11,6)'
 5 OutDataTypeStr ex_auto_gain_controller/sud/Loop gain 'fixdt(0,17,29)'
 6 OutDataTypeStr ex_auto_gain_controller/sud/Product1 'fixdt(1,17,22)'
...

Specify a safety margin for optimization

Using the fxpOptimizationOptions object, you can now specify a safety margin for the ranges
used to optimize data types.

The optimization process collects ranges through simulation, static range analysis, and design ranges
specified on a model and finds an optimal data type based on the union of all ranges. When you
specify a safety margin, the software augments the collected ranges with the specified margin. For
example, to add ten percent to all collected ranges, set the SafetyMargin property of the
fxpOptimizationOptions object, options, to 10.

options.AdvancedOptions.SafetyMargin = 10;

Enforce known data types in a system

Use the addSpecification function to specify known data types for blocks and parameters within
your system. For example, if you know that the input to your system will always be an int8, you can
do the following to enforce this during optimization.

bp = Simulink.Simulation.BlockParameter(...
'ex_auto_gain_controller/input_signal','OutDataTypeStr','int8');
addSpecification(opt,'BlockParameter',bp)

Revert optimization

After using the fxpopt function to optimize the data types in your model, you can revert your model
back to its original state using the revert function.

R2020a

6-4

https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/fxpoptimizationoptions-class.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/fxpoptimizationoptions.addspecification.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/fxpopt.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/optimizationresult.revert.html

Coder Type Editor: Create and edit input types interactively
While using the fiaccel, buildInstrumentedMex, or convertToSingle command, you can
specify the type, size, and complexity of the input arguments of your MATLAB entry-point functions
by using coder.Type objects. In R2020a, you can create and edit coder.Type objects interactively
by using the Coder Type Editor. To launch the Coder Type Editor, run this command at the MATLAB
command line:

coderTypeEditor

See Create and Edit Input Types by Using the Coder Type Editor and coderTypeEditor.

normalizedReciprocal: Compute the normalized reciprocal
The normalizedReciprocal function computes the normalized reciprocal of an input, which can
then be used in fixed-point applications. For syntax and examples, see normalizedReciprocal.

nextpow2: Compute the next-higher power of 2 of fixed-point values
The nextpow2 function returns the exponents of the next-higher powers of 2 that satisfy 2.^p >=
abs(a) for fixed-point values.

a = fi([1 -2 3 -4 5 9 519]);
p = nextpow2(a)

p =

 0 1 2 2 3 4 10

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 6
 FractionLength: 0

For more information, see nextpow2.

Improved numerical accuracy for slope-bias scaled fixed-point
operations
Fixed-Point Designer now has improved numerical accuracy for slope-bias scaled fixed-point
operations in simulation and code generation. For example, this table illustrates the difference in
numerical accuracy in simulation for these Simulink models.

Previous Releases R2020a

6-5

https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/fiaccel.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/buildinstrumentedmex.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/converttosingle.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/coder.type-class.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ug/define-and-edit-input-properties-by-using-the-coder-type-editor.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/codertypeeditor.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/normalizedreciprocal.html
https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/embedded.fi.nextpow2.html

Previous Releases R2020a

Generate test data as a dataset
Use the outputAllData function to generate test data as a dataset. In previous releases, you could
output data only as a timeseries object or an array.

Functionality being removed or changed
The applyOnRootInport function will be removed in a future release. In R2020a, this function
emits a warning.

R2020a

6-6

https://www.mathworks.com/help/releases/R2020a/fixedpoint/ref/fixed.datagenerator.outputalldata.html

R2019b

Version: 6.4

New Features

Bug Fixes

7

Propose data types based on multiple simulation scenarios in the
Fixed-Point Tool
You can now use a Simulink.SimulationInput object to author different simulation scenarios in
the Fixed-Point Tool. The Fixed-Point Tool proposes data types based on merged ranges from the
simulation scenarios.

Define a SimulationInput object in the base workspace and specify the conditions for each
scenario.

si = Simulink.SimulationInput
% Scan through different seeds for a random input
rng(1);
seeds = randi(1e6, [1 4]);

for sIndex = 1:length(seeds)
 si(sIndex) = Simulink.SimulationInput(model);
 si(sIndex) = si(sIndex).setVariable('SOURCE', 2);
 si(sIndex) = si(sIndex).setBlockParameter([model '/Random/uniformRandom'],...
 'Seed', num2str(seeds(sIndex))); % scan through the seeds
 si(sIndex) = si(sIndex).setUserString(sprintf('random_%i', seeds(sIndex)));
end

In the Fixed-Point Tool, select the SimulationInput object specified in the base workspace under
Simulation Inputs.

The tool proposes data types based on the merged ranges collected from all simulation scenarios.

R2019b

7-2

https://www.mathworks.com/help/releases/R2019b/simulink/slref/simulink.simulationinput-class.html

You can see the details of both the individual simulations as well as the merged simulation by
selecting the run in the Workflow Browser.

Restore model to original design
The preparation stage of fixed-point conversion in the Fixed-Point Tool now generates a restore point
for your model by saving a copy of the model in its current state. To restore your model back to its
original state, in the Fixed-Point Tool, at any time during the conversion click the Restore Original
Model button.

Quantize and generate fixed-point C/C++ code for a trained SVM
model (requires MATLAB Coder and Statistics and Machine Learning
Toolbox)
You can quantize a trained model and generate C/C++ code for the prediction of a support vector
machine (SVM) classification and SVM regression. To generate fixed-point code, create a structure
that defines fixed-point data types using the generateLearnerDataTypeFcn and use the structure
as an input argument of the loadLearnerForCoder function in an entry-point function.

Allow off-curve table values in optimized lookup tables
You can now generate an optimized lookup table with off-curve table values.

In past releases, the optimization required table values to match the quantized output values of the
original function being approximated. By allowing off-curve table values, you may be able to reduce
the memory of the lookup table while maintaining the same error tolerances, or maintain the same
memory while reducing the error tolerances.

To allow off-curve table values, in the FunctionApproximation.Options object, set the
OnCurveTableValues property to 0.

7-3

https://www.mathworks.com/help/releases/R2019b/fixedpoint/ref/functionapproximation.options-class.html

options = FunctionApproximation.Options;
options.OnCurveTableValues = 0;

Generate optimized AUTOSAR-compliant lookup table
Generate an AUTOSAR-compliant optimized lookup table using a Curve or Map block. Set the
AUTOSARCompliant property to 1 in the FunctionApproximation.Options object.

options = FunctionApproximation.Options;
options.AUTOSARCompliant = 1;

You can also access this property in the Lookup Table Optimizer.

Setting this property to 1 (true) checks out an AUTOSAR Blockset license when you use the
approximate or replaceWithApproximate methods.

Generate simulation inputs to test full operating range of design
Use the fixed.DataGenerator and fixed.DataSpecification objects to generate simulation
inputs to test the full operating range of your design.

You can generate intervals of data with values focusing on cases such as values close to boundaries,
values close to powers-of-two, inf and NaN, negative zero, and denormal numbers. The generated
data can be of any dimension or complexity, and it can have a double, single, integer, or fixed-point
data type.

You can specify the data type, interval, and other properties of the data you want to generate using
the fixed.DataSpecification object.

dataspec = fixed.DataSpecification('fixdt(1,16,8)', 'Interval', {-1, 1})

dataspec =

 fixed.DataSpecification with properties:

 DataTypeStr: 'sfix16_En8'
 Interval: [-1,1]
 MandatoryValues: <empty>
 Complexity: 'real'
 Dimensions: 1

Use the fixed.DataGenerator object to generate the data according to the specifications, and
access the output.

datagen = fixed.DataGenerator('DataSpecifications', dataspec);
testData = outputAllData(datagen)

testData =

 Columns 1 through 7
 -1.0000 -0.9961 -0.5039 -0.5000 -0.4961 -0.2539 -0.2500
 Columns 8 through 14
 -0.2461 -0.1289 -0.1250 -0.1211 -0.0664 -0.0625 -0.0586
 Columns 15 through 21
 -0.0352 -0.0313 -0.0273 -0.0195 -0.0156 -0.0117 -0.0078
 Columns 22 through 28

R2019b

7-4

https://www.mathworks.com/help/releases/R2019b/autosar/ref/curve.html
https://www.mathworks.com/help/releases/R2019b/autosar/ref/map.html
https://www.mathworks.com/help/releases/R2019b/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2019b/fixedpoint/ref/lookuptableoptimizer.html
https://www.mathworks.com/help/releases/R2019b/fixedpoint/ref/functionapproximation.lutsolution.approximate.html
https://www.mathworks.com/help/releases/R2019b/fixedpoint/ref/functionapproximation.lutsolution.replacewithapproximate.html

 -0.0039 0 0.0039 0.0078 0.0117 0.0156 0.0195
 Columns 29 through 35
 0.0273 0.0313 0.0352 0.0586 0.0625 0.0664 0.1211
 Columns 36 through 42
 0.1250 0.1289 0.2461 0.2500 0.2539 0.4961 0.5000
 Columns 43 through 45
 0.5039 0.9961 1.0000

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 16
 FractionLength: 8

Features under tech preview
Tech Preview: HDL-optimized fixed-point matrix operations blocks

The Real Burst QR Decomposition and Complex Burst QR Decomposition blocks use Givens rotations
to efficiently compute the QR decomposition of an input matrix.

Use the Complex Burst Matrix Solve Using QR Decomposition or the Real Burst Matrix Solve Using
QR Decomposition blocks to compute the value of x in the equation Ax = b.

The blocks use hardware-friendly control signals and provide an efficient hardware implementation.
The block supports HDL code generation using HDL Coder.

Tech Preview: Half-precision data types in Simulink

To simulate half-precision floating-point data types in Normal mode in your Simulink model, contact
rcheruku@mathworks.com.

7-5

https://www.mathworks.com/help/releases/R2019b/fixedpoint/ref/realburstqrdecomposition.html
https://www.mathworks.com/help/releases/R2019b/fixedpoint/ref/complexburstqrdecomposition.html
https://www.mathworks.com/help/releases/R2019b/fixedpoint/ref/complexburstmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2019b/fixedpoint/ref/realburstmatrixsolveusingqrdecomposition.html
https://www.mathworks.com/help/releases/R2019b/fixedpoint/ref/realburstmatrixsolveusingqrdecomposition.html

R2019a

Version: 6.3

New Features

Bug Fixes

8

Emulate hardware handling of denormal numbers
If your target hardware uses flush-to-zero behavior for denormal numbers, you can now emulate this
behavior during accelerated simulation of your system.

To enable flush-to-zero behavior, in the Configuration Parameters, on the Math and Data Types
pane, set the Simulation behavior for denormal numbers parameter to Flush to zero (FTZ).
The default behavior for simulation of denormal numbers is Gradual underflow.

You can simulate a top-level model using gradual underflow with any simulation mode. Models
referenced by the top-level model can simulate the flush-to-zero behavior only if the instance of the
referenced model uses an accelerated simulation mode and has the Simulation behavior for
denormal numbers parameter set to Flush to zero (FTZ).

New data type propagation rules for Sum, Gain, and Product blocks
There are now new output data type choices for the Sum, Gain, and Product blocks. These new data
type propagation rules give you more control over the range and scaling of the output.

• Inherit: Keep MSB – This rule selects an output data type that maintains the full range of the
operation and then reduces the precision of the output value to a size appropriate for the target
hardware. This rule will never produce an overflow.

This rule is available for the Sum, Product, and Gain blocks.
• Inherit: Keep LSB – This rule selects an output data type that maintains the precision of the

operation but reduces the range if the full type does not fit on the target hardware. This rule can
produce overflows.

This rule is available for the Sum block.
• Inherit: Match Scaling – This rule attempts to maintain the scaling of the output data type.

This rule can produce overflows.

This rule is available for the Product and Gain blocks.

Automatically prepare Simulink systems for conversion to fixed point
Using the Fixed-Point Tool, you can prepare a model for conversion from a floating-point model or
subsystem to an equivalent fixed-point representation. During the preparation stage of the
conversion, the Fixed-Point Tool checks the system under design for compatibility with the conversion
process and reports any issues found in the model. When possible, the Fixed-Point Tool automatically
changes settings that are not compatible. In cases where the tool is not able to automatically change
the settings, the tool notifies you of the changes you must make manually to help the conversion
process be successful.

Complex support for half-precision
You can now represent complex values using a half-precision floating-point data type in MATLAB. To
cast a variable to half precision, use the half function.

a_double = 3 + 4i;
a_half = half(a_double)

R2019a

8-2

https://www.mathworks.com/help/releases/R2019a/fixedpoint/ref/half.html

a_half =

 half

 3.0000 + 4.0000i

Most functions which support half-precision inputs also support complex half-precision inputs.

Specify multiple simulation scenarios for data type optimization
You can now specify multiple simulation scenarios to use for collecting ranges and verifying your
design during fixed-point optimization. Specifying multiple simulation scenarios enables you to
optimize the data types of your system using a range of input stimuli to ensure that the system is
exercised over its entire operating range. The optimization uses the defined simulation scenarios to
verify the solutions based on the tolerances specified in the options object.

Lookup table optimization options available in the app
You can now specify the following options from the Lookup Table Optimizer app.

• Interpolation – Method to use when an input falls between breakpoint values

Setting the Interpolation to None generates a Direct Lookup Table (n-D) block.
• Breakpoint specification – Spacing of breakpoint data
• Saturate to output type – Whether to saturate the output of the function being approximated to

the range of the output type

The app is also now able to approximate any MATLAB function handle, Math Function block, or
stateless subsystem. It can also optimize the breakpoints and spacing of any existing Lookup Table
block.

Specify new constraints for lookup table optimization
Using the Lookup Table Optimizer, you can now specify additional options to control the optimization
behavior.

• Max Memory Usage – Specify the maximum amount of memory, in bytes, that the lookup table
approximation can use.

• Max Time – Specify the maximum amount of time, in seconds, to allow the approximation to run.
The approximation runs until it reaches the time specified, finds an ideal solution, or reaches
another stopping criteria.

You can specify these options in the Advanced Options dialog on the Create page of the Lookup
Table Optimizer app or using the FunctionApproximation.Options object.

Derived range analysis support for fixed-point optimization
When using fxpopt to optimize the fixed-point data types of a Simulink system, you can now specify
whether the optimization should consider ranges derived from design ranges specified in your model
when assessing a solution. To enable derived range analysis while optimizing data types, set the
UseDerivedRangeAnalysis property of the fxpOptimizationOptions object to true.

8-3

https://www.mathworks.com/help/releases/R2019a/fixedpoint/ref/lookuptableoptimizer.html
https://www.mathworks.com/help/releases/R2019a/simulink/slref/directlookuptablend.html
https://www.mathworks.com/help/releases/R2019a/fixedpoint/ref/lookuptableoptimizer.html
https://www.mathworks.com/help/releases/R2019a/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2019a/fixedpoint/ref/fxpopt.html
https://www.mathworks.com/help/releases/R2019a/fixedpoint/ref/fxpoptimizationoptions-class.html

opt = fxpOptimizationOptions;
opt.AdvancedOptions.UseDerivedRangeAnalysis = true;

Specify tolerances of signals in system for conversion
After performing a range collection run, you can specify absolute, relative, and time tolerances for
signals in your model that have signal logging enabled. After you simulate an embedded run, the Run
Browser displays whether the embedded run meets the specified signal tolerances compared to the
range collection run. You can view the comparison plots in the Simulation Data Inspector.

New functions supported for half-precision inputs
The following functions now support half-precision inputs.

• fma – new in R2019a
• hypot
• min
• max
• mean
• dot

In addition, the relational operators (gt, lt, eq, ge, le, ne) are now able to compare half and integer
types.

For more information, see half.

R2019a

8-4

https://www.mathworks.com/help/releases/R2019a/matlab/ref/hypot.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/timeseries.min.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/timeseries.max.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/timeseries.mean.html
https://www.mathworks.com/help/releases/R2019a/matlab/ref/dot.html
https://www.mathworks.com/help/releases/R2019a/fixedpoint/ref/half.html

R2018b

Version: 6.2

New Features

Bug Fixes

9

Lookup Table Optimization: Automatically replace subsystems with a
direct lookup table and other enhancements
Approximate a Subsystem with a lookup table

You can now replace an entire subsystem with a lookup table. To approximate a subsystem, specify
the subsystem you want to approximate in the FunctionApproximation.Problem object. This
functionality is available only through the command line.

Generate a direct lookup table to approximate a function or subsystem

You can now approximate a function, subsystem, or math function with a Direct Lookup Table (n-D)
block. Direct Lookup Table (n-D) blocks do not use breakpoint data, and instead index directly into
the table data. To generate a Direct Look Table (n-D) block, in a
FunctionApproximation.Options object, set the Interpolation property to None. This
functionality is available only through the command line.

Generate a lookup table approximation from a function handle using the Lookup Table
Optimizer app

Using the Lookup Table Optimizer app, you can now generate a lookup table that approximates a
function handle. In previous releases, lookup table approximation of function handles was available
only through the command line.

Generate lookup tables with flat and nearest interpolation methods

When an input falls between breakpoint values, the lookup table interpolates the output value using
neighboring breakpoints. Using the FunctionApproximation.Options object, you can now
specify Flat and Nearest interpolation methods. For more information on these interpolation
methods, see FunctionApproximation.Options. This functionality is available only through the
command line.

Automatically replace blocks with an optimized lookup table block

Using the Lookup Table Optimizer app, you can now automatically replace a block with an optimized
lookup table. In previous releases you had to manually insert the optimized lookup table
approximation into your model.

Data Type Optimization: Using parallel simulations, automatically
select and apply heterogeneous data types for your system under
design
Parallel support for data type optimization

The new UseParallel property of the fxpOptimizationOptions object allows you to specify
whether to run iterations of the optimization in parallel. The default value of this property is false.
Running the iterations in parallel requires a Parallel Computing Toolbox license. If you do not have a
Parallel Computing Toolbox license, or if you specify false, the iterations run in serial.

New method for specifying required behavior of optimized design

Using the addTolerance method, you can now specify a time tolerance for your optimized design.

R2018b

9-2

https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/functionapproximation.problem-class.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/directlookuptablend.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/directlookuptablend.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/fxpoptimizationoptions-class.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/fxpoptimizationoptions.addtolerance.html

When the tolerance_type input argument is set to 'TimeTol', then tolerance_value defines a
time interval, in seconds, in which the maximum and minimum values define the upper and lower
values to compare against. For more information, see How the Simulation Data Inspector Compares
Data (Simulink).

Single Precision Converter: Convert MATLAB Function blocks to single
precision
Using the Single Precision Converter, you can automatically convert Simulink models and subsystems
from double precision to single precision. Beginning in R2018b, the Single Precision Converter also
converts MATLAB Function blocks from double precision to single precision.

To use the Single Precision Converter, from the Simulink Analysis menu, select Data Type Design >
Single Precision Converter. Under System under design, select the system to convert to single-
precision, then click Convert to Single.

For more information, see Getting Started with Single Precision Converter.

cordicacos and cordicasin Functions: Compute fixed-point CORDIC
inverse sine and cosine
The cordicacos and cordicasin functions provide a CORDIC-based approximation of the inverse
cosine and inverse sine for use in fixed-point applications. For syntax and examples, see cordicacos
and cordicasin.

Simulation Analysis and Performance: Instrumentation support for
Fast Restart mode
Using the Fixed-Point Tool, you can now view instrumentation data for your model when it simulates
in Fast Restart mode. In previous releases, only Normal mode simulation was supported for
instrumentation in the Fixed-Point Tool. For more information about Fast restart mode, see Get
Started with Fast Restart (Simulink)

Explore and debug Fixed-Point Tool results with sorting and filtering
functionalities
Using the new Explore tab in the Fixed-Point Tool, you can now sort and filter results. The Explore
tab enables you to sort results based on the following criteria:

• Block execution order
• Magnitude of logged simulation values
• Dynamic range of logged simulation values
• Data type properties, such as word length, integer length, or fraction length

You can filter results based on the following criteria:

• Data type
• Numerical issues, such as overflows or underflows

9-3

https://www.mathworks.com/help/releases/R2018b/simulink/ug/how-the-simulation-data-inspector-tool-compares-time-series-data.html
https://www.mathworks.com/help/releases/R2018b/simulink/ug/how-the-simulation-data-inspector-tool-compares-time-series-data.html
https://www.mathworks.com/help/releases/R2016b/fixedpoint/ug/getting-started-with-the-double-to-single-converter.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/cordicacos.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/cordicasin.html
https://www.mathworks.com/help/releases/R2018b/simulink/ug/fast-restart-workflow.html
https://www.mathworks.com/help/releases/R2018b/simulink/ug/fast-restart-workflow.html

• Whether the logged simulation values are always whole numbers
• Signedness

To use the new sorting and filtering options, simulate a system using the Fixed-Point Tool with fixed-
point instrumentation or signal logging turned on. The Explore tab is visible when the Fixed-Point
Tool contains at least one run of instrumentation data.

Design and simulate half-precision systems in MATLAB
You can now specify half-precision floating-point data types in MATLAB. Half-precision data types
occupy only 16 bits of memory, but their floating-point representation enables them to handle wider
dynamic ranges than integer or fixed-point data types of the same size.

To cast a variable to half precision, use the half function.

a = half(pi)

 half

 3.1406

R2018b

9-4

https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/half.html

R2018a

Version: 6.1

New Features

Bug Fixes

Compatibility Considerations

10

Lookup table optimization: Approximate functions using a lookup
table and optimize existing lookup tables to minimize RAM usage
Use the Lookup Table Optimizer to obtain an optimized (memory-efficient) lookup table that
approximates an existing lookup table or math function. By replacing a floating-point math function
block with a fixed-point lookup table, or optimizing the spacing and data types of an existing lookup
table, you can improve the memory-efficiency of your algorithm.

To open the Lookup Table Optimizer, in your Simulink model, select Analysis > Data Type Design >
Lookup Table Optimizer.

You can also use the command line interface to generate a memory-efficient lookup table. The
command-line workflow also enables you to generate a lookup table from a MATLAB math function or
function handle.

p = FunctionApproximation.Problem('sin')

 p =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1×1 FunctionApproximation.Options]

Specify additional options and constraints, such as the breakpoint specification.

p.Options.BreakpointSpecification = 'EvenSpacing'

Solve the optimization and compare the output of the original function with the output of the newly
generated lookup table.

s = solve(p);
data = compare(s)

R2018a

10-2

Data type optimization: Automatically select and apply heterogeneous
data types for your system under design, optimizing bit width.
Use the fxpopt function to optimize the data types used in your system under design. You can
specify constraints and tolerances to meet your design goals using the fxpOptimizationOptions
object. The software analyzes ranges of objects in your system and your specified constraints, such as
tolerances, to apply heterogeneous data types to your system while minimizing total bit width.

Redesigned code generation reports: View fiaccel and instrumentation
results with improved user interface
In R2018a, the code generation reports for fiaccel, buildInstrumentedMex, and
showInstrumentationResults have a new user interface.

Some benefits of the new use interfaces are:

• Improved navigation. For example, if you double-click a variable in the MATLAB code, you see the
variable in the Variables tab.

10-3

• More information in the Summary tab of the fiaccel and buildInstrumentedMex reports.
The Summary tab now includes code generation settings and your entry-point functions with the
input argument data types that you specified.

• Easier to use pop-up displays data type information in the showInstrumentationResults
report. For example, you can pin the pop-up display to the report.

In R2018a, the reports are located in the same folders as in previous releases, but have a different file
format. In previous releases, a report was saved with an HTML format and consisted of many files. In
R2018a, a report is saved as one file with an .mldatx file extension. You can open a file with
an .mldatx extension in MATLAB.

Compatibility Considerations
If you generate a report in R2018a, you cannot open it in a previous release. In R2018a, you can open
reports that you generated in a previous release, but they look and behave as they did in that release.

R2018a

10-4

R2017b

Version: 6.0

New Features

Bug Fixes

Compatibility Considerations

11

Simplified Fixed-Point Tool: Convert Simulink systems to fixed point
using the updated tool that provides guidance at each step of the
workflow
The redesigned Fixed-Point Tool enables you to easily convert floating-point Simulink systems to fixed
point. The new tool features a simplified, linear workflow, with better representation of the data.

Traceability between entries in the table, columns of the new data type visualization, and the model
enable you to efficiently debug numerical issues and find the ideal fixed-point design for your system.

Launch the Fixed-Point Tool from any model from the Analysis > Data Type Design > Fixed-Point
Tool, or by right-clicking the system you want to convert to fixed point and selecting Fixed-Point
Tool.

For more information, see Autoscaling Using the Fixed-Point Tool.

Data Type Visualizer: Understand and analyze data type choices by
viewing histograms of the dynamic range of signals in your model
Using the Fixed-Point Tool, you can now view a summary of histograms of the bits used by each object
in your model. Each column in the data type visualization represents a histogram for one object in
your model. Each bin in a histogram corresponds to a bit in the binary word.

R2017b

11-2

https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/working-with-the-fixed-point-tool.html

Selecting a column highlights the corresponding model object in the spreadsheet of the Fixed-Point
Tool, and populates the Result Details pane with more detailed information about the selected
result.

Use this data type visualization to see a summary of the ranges of objects in your model and to
quickly spot sources of overflows, underflows, and inefficient data types. To view the data type
visualization, simulate a system with fixed-point instrumentation or signal logging turned on.
Overflows are marked with a red triangle above the column representing the model object.
Underflows are marked with a yellow triangle. For an example, see Debug a Fixed-Point Model.

Data Type Exploration: Iteratively explore multiple floating point to
fixed-point conversions to determine the optimal choice
In past releases, after applying fixed-point data types using the Fixed-Point Tool, you could no longer
explore new default word length or fraction length choices. The tool would only rescale the existing
fixed-point types. In R2017b, you can now propose and apply fixed-point data types using new
proposal settings and default data types, and compare the behavior between runs until you find the
optimal choice. For an example, see Explore Multiple Floating-Point to Fixed-Point Conversions.

Function Input and Output Logging: Selectively log and plot function
inputs and outputs at any level of your design in the Fixed-Point
Converter app
You can now elect to log and plot all function inputs and outputs during the Test phase of fixed-point
conversion using the Fixed-Point Converter app. In previous releases, only top-level function inputs
and outputs could be logged.

To log a function input or output, on the Convert to Fixed-Point page, after converting your code,
click the Test arrow and select the Log inputs and outputs for comparison plots check box. In
the Log Data column of the Variables tab, select the check mark next to the function inputs and
outputs you want to log. By default, all inputs and outputs of the top-level function are logged. To log

11-3

https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/debugging-a-fixed-point-model.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/_mw_fba01d2a-139f-41f8-b04c-22f97e6e8536.html

inputs and outputs of other functions in the call tree, select the function in the left pane, and select
the variables you want logged.

When you are done selecting the variables you want to log, click Test.

The Fixed-Point Converter runs a floating-point and fixed-point simulation, then generates
comparison plots and calculates the difference error for all variables logged.

R2017b

11-4

Click the icon in the Max Diff column to open the comparison plot.

For an example, see Debug Numerical Issues in Fixed-Point Conversion Using Variable Logging.

Simulink Diagnostic Management: Suppress immaterial diagnostic
warnings and errors from specific blocks to efficiently discover
modeling errors
You can now suppress certain diagnostics that are treated as errors for specific objects in your model.
In past releases, only warning diagnostics were supported for suppression.

Click the Suppress button next to the error or warning in the Diagnostic Viewer to suppress the
diagnostic from the specified source. You can restore the diagnostic from the source by clicking the
Restore button.

You can also configure suppressions from the command line. For more information, see
Simulink.suppressDiagnostic and Simulink.restoreDiagnostic.

11-5

https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/best-practices-for-debugging-out-of-the-box-conversion-by-the-fixed-point-converter-app.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/simulink.suppressdiagnostic.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/simulink.restorediagnostic.html

Expanded Overflow Diagnostics: Comprehensive run-time diagnostics
for wrapping and saturating overflows from Stateflow and MATLAB
Function blocks
The Diagnostic Viewer now reports overflows due to wrap and saturation that occur within a MATLAB
Function block or in a Stateflow chart that uses MATLAB as the action language. In cases of
overflows that occur within a MATLAB Function block, the diagnostic includes the line number at
which the overflow occurred.

You can suppress and restore these diagnostics at the block level by clicking the Suppress and
Restore buttons respectively in the Diagnostic Viewer.

Autoscaling Lookup Table Objects: Propose and apply fixed-point data
types for Simulink Lookup Table and Breakpoint objects
Using the Fixed-Point Tool, you can now propose and apply data types for Simulink LookupTable and
Breakpoint objects used in your model, including within Lookup table, Prelookup, and Interpolation
blocks. The Fixed-Point Tool detects these objects in your model and proposes a fixed-point data type
based on their respective values, ranges, and constraints. The tool applies the proposed data type to
the object by updating the object in the workspace in which it is defined. For more information on
autoscaling data objects using the Fixed-Point Tool, see Autoscaling Data Objects Using the Fixed-
Point Tool.

Check for expensive fixed-point data types in generated code
When a design contains integer or fixed-point word lengths that do not exist on your target hardware,
the generated code can contain extra saturation code, shifts, and multiword operations. By changing
the data type to one that is supported by your target hardware, you can improve the efficiency of the
generated code. The Model Advisor flags these expensive data types in your model. For example, the
Model Advisor would flag a fixed-point data type with a word length of 17 if the target hardware was
32 bits. For more information, see Optimize Generated Code with the Model Advisor.

Propose and apply data types for model reference blocks
programmatically
A new syntax for the DataTypeWorkflow.Converter class enables you to specify a top model when
converting a referenced model to fixed point. To convert a referenced model, ref_model, and collect
ranges by simulating the referenced model from the top model, top_model, use the following syntax:

converter = DataTypeWorkflow.Converter(ref_model,'TopModel',top_model)

For more information on converting systems to fixed point programmatically, see Command Line
Interface for the Fixed-Point Tool.

cordictanh function for computing fixed-point CORDIC-based
hyperbolic tangent
The cordictanh function provides a CORDIC-based approximation of the hyperbolic tangent for use
in fixed-point applications. For syntax and examples, see cordictanh.

R2017b

11-6

https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/autoscale-data-objects-using-the-fixed-point-tool.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/autoscale-data-objects-using-the-fixed-point-tool.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/optimizing-your-generated-code-with-the-model-advisor.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/convert-a-model-sing-the-command-line.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/convert-a-model-sing-the-command-line.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/cordictanh.html

Functionality being removed or changed
Functionality Result Use This Instead Compatibility

Considerations
autofixexp Still runs DataTypeWorkflow.C

onverter
For more information on
how to use the
DataTypeWorkflow.C
onverter to convert a
system to fixed point,
see The Command-Line
Interface for the Fixed-
Point Tool.

11-7

https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/the-command-line-interface-for-the-fixed-point-tool.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/the-command-line-interface-for-the-fixed-point-tool.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/the-command-line-interface-for-the-fixed-point-tool.html

R2017a

Version: 5.4

New Features

Bug Fixes

Compatibility Considerations

12

Simulink Diagnostic Management: Control which simulation and fixed-
point diagnostic warnings you receive from specific blocks, including
model reference
Select blocks with certain diagnostic suppressions by default

Beginning in R2017a, the Counter Free-Running, HDL Counter, Counter Limited, and Extract Bits
blocks no longer report wrap on overflow warnings. The blocks continue to report errors due to wrap
on overflows. You can restore the warning diagnostic by breaking the library link and using the
Simulink.restoreDiagnostic function.

Diagnostic suppressor functions support MSLDiagnostic as input argument

You can now suppress and restore certain diagnostic warnings thrown by your model using a
Simulink.MSLDiagnostic object as an input to the Simulink.suppressDiagnostic and
Simulink.restoreDiagnostic functions.

To use simulation metadata and MSLDiagnostic objects, use set_param to set
ReturnWorkspaceOutputs to on. Store the simulation output in a variable.

set_param(model_name,'ReturnWorkspaceOutputs','on');
out = sim(model_name);

Access the MSLDiagnostic object through the simulation output.

diag = out.getSimulationMetadata.ExecutionInfo.WarningDiagnostics(1).Diagnostic

diag =

 MSLDiagnostic with properties:

 identifier: 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss'
 message: 'Parameter precision loss occurred for 'Value' of 'Suppressor_CLI_Demo/one'. The parameter's value cannot be represented exactly using the run-time data type. A small quantization error has occurred. To disable this warning or error, in the Configuration Parameters > Diagnostics > Data Validity pane, set the 'Detect precision loss' option in the Parameters group to 'none'.'
 paths: {'Suppressor_CLI_Demo/one'}
 cause: {}
 stack: [0×1 struct]

Use the Simulink.suppressDiagnostic function to suppress the diagnostic warning specified by
the MSLDiagnostic object, diag.

Simulink.suppressDiagnostic(diag)

You can restore the diagnostic using the Simulink.restoreDiagnostic function

Simulink.restoreDiagnostic(diag)

Improved workflow for suppressing diagnostics from referenced models

You can now suppress certain diagnostic warnings for specified instances of warnings in a referenced
model. By accessing the MSLDiagnostic object of the specific instance of the warning, you can
suppress the warning only when the block inside the referenced model is simulated from the specified
top model.

R2017a

12-2

https://www.mathworks.com/help/releases/R2017a/simulink/slref/simulink.restorediagnostic.html
https://www.mathworks.com/help/releases/R2017a/simulink/slref/simulink.suppressdiagnostic.html
https://www.mathworks.com/help/releases/R2017a/simulink/slref/simulink.restorediagnostic.html

Derived range analysis support for System objects in Simulink
Using the Fixed-Point Tool, you can now derive ranges for models that use handle objects, including
System objects. For more information on range analysis in the Fixed-Point Tool, see How Range
Analysis Works.

Autoscaling support for Simulink.AliasType objects
Using the Fixed-Point Tool, you can now propose and apply data types for Simulink.AliasType
objects used in your model. The Fixed-Point Tool detects alias type objects in your model and
proposes a fixed-point data type based on their respective values and ranges. The tool applies the
proposed data type to the alias type object by updating the definition of the object in the base
workspace. For more information, see Autoscale Simulink.AliasType Objects.

Improved data type proposals for shared data type groups across
model reference
In past releases, there was limited traceability of model objects which were required to use the same
data type across model reference boundaries. This often resulted in an update diagram error after
applying proposed data types.

Beginning in R2017a, when the Fixed-Point Tool proposes data types for data objects in shared data
type groups, the tool generates a proposal based on all collected ranges, including range information
from data objects used inside referenced models. The Fixed-Point Tool can also now highlight all
model elements that must use the same data type when the shared data type group crosses model
reference boundaries.

More fixed-size variable information in Convert to Fixed-Point step of
the Fixed-Point Converter app
In R2017a, in the Fixed—Point Converter app, after you convert floating-point MATLAB code to fixed-
point MATLAB code, the app provides fixed-point type information for variables.

In the code pane of the Convert to Fixed-Point step, after fixed-point conversion, if you place your
cursor over a converted variable or expression, the app displays the fixed-point type information.

12-3

https://www.mathworks.com/help/releases/R2017a/fixedpoint/ug/how-does-range-analysis-work.html
https://www.mathworks.com/help/releases/R2017a/fixedpoint/ug/how-does-range-analysis-work.html
https://www.mathworks.com/help/releases/R2017a/fixedpoint/ug/autoscale-objects.html

For a variable with a fixed-point type in the original code, when you place your cursor over the
variable before or after conversion, the app displays the fixed-point type information.

fimath property changes
All fimath property names are case-sensitive and require that you use the full property names. You
cannot use truncated property names. In previous releases, when using truncated property names, a
warning would appear. Beginning in R2017a, inexact property names result in an error.

Compatibility Considerations
To avoid seeing errors for fimath properties, update your code so it uses the full names and correct
cases of all fimath properties. The full names and correct cases of the properties appear when you
display a fimath object on the MATLAB command line.

R2017a

12-4

https://www.mathworks.com/help/releases/R2017a/fixedpoint/ref/fimath.html

R2016b

Version: 5.3

New Features

Bug Fixes

13

Single-Precision Conversion: Automatically convert double-precision
systems to use single-precision data types in Simulink
Using the Single Precision Converter, you can now automatically convert Simulink models from
double-precision to single-precision. The Converter makes these changes:

• Conversion of user-specified double-precision data types to single-precision data types (applies to
block settings, Stateflow chart settings, signal objects, and bus objects.)

• Output signals and intermediate settings using inherited data types which compile to double-
precision change to single-precision data types.

The converter does not change Boolean, built-in integer, or user-specified fixed-point data types.
When the conversion is finished, the converter displays a table summarizing the compiled and
proposed data types of the objects in the system under design. When the conversion is finished, a
table summarizes the compiled and proposed data types of the objects in the system under design.

To use the Single-Precision Converter, from the Simulink Analysis menu, select Data Type Design >
Single Precision Converter. Under System under design, select the system to convert to single-
precision, then click Convert to Single.

For more information, see Getting Started with Single Precision Converter.

Float to Fixed Conversion of MATLAB Function Blocks: Automatically
generate fixed-point versions of floating-point MATLAB Function
blocks
When converting a model that contains MATLAB Function blocks, you can now inspect type
information of the MATLAB variables in the context of the code. This new code view provides a
similar workflow to the Fixed-Point Converter app in MATLAB. To open the new code view, in the
Fixed-Point Tool, under Automatic Data Typing, click Inspect MATLAB Function blocks.

R2016b

13-2

https://www.mathworks.com/help/releases/R2016b/fixedpoint/ug/getting-started-with-the-double-to-single-converter.html

The window that opens helps you to inspect advanced conversion settings such as fimath settings,
and MATLAB function replacements.

Once you are satisfied with the proposed data types, click Apply to have the tool automatically
generate a variant subsystem. The variant subsystem contains the original floating-point version of
the MATLAB function block, and a fixed-point version of the block. You can refine the conversion by
modifying the original floating-point MATLAB code. The fixed-point variant will automatically update
after reconverting the block.

Histogram Instrumentation in Simulink: Generate log2 histograms of
Simulink signals and blocks from simulation data
Using the Fixed-Point Tool, you can now view a histogram of bits used by each object in your system
under design. The bit weights are displayed along the X-axis, and the percentage of occurrences
along the Y-axis. Each bin in the histogram corresponds to a bit in the binary word. The plot also
includes the number of times that zero occurred. After simulating a system with fixed-point
instrumentation or signal logging turned on, select an object in your model from the Contents pane of
the Fixed-Point Tool and select the Result Details tab to view the histogram plot.

13-3

R2016b

13-4

Autoscaling numerictype Objects: Propose and apply fixed-point data
types for Simulink numeric type objects
Using the Fixed-Point Tool, you can now propose and apply data types for Simulink.NumericType
and embedded.numerictype objects used in your model. The Fixed-Point Tool detects numeric type
objects in your model and proposes a fixed-point data type based on their respective values and
ranges. The tool applies the proposed data type to the numeric type object by updating the definition
of the object in the base or model workspace. For more information on autoscaling
Simulink.NumericType objects, see Autoscale Simulink.NumericType Objects.

Range analysis support for FIR filters, Dead Zone, and Rate Limiter
blocks
Using the Fixed-Point Tool, you can now derive ranges for models that use Discrete FIR Filter, Dead
Zone, and Rate Limiter blocks. For more information on range analysis in the Fixed-Point Tool, see
How Range Analysis Works.

Simulink Diagnostic Suppressor
The Diagnostic Viewer in Simulink now includes an option to suppress certain diagnostics. This
feature enables you to suppress warnings for specific objects in your model. Click the Suppress this
warning button next to the warning in the Diagnostic Viewer to suppress the warning from the
specified source. You can restore the warning from the source by clicking Restore this warning.

You can also control the suppressions from the command line. For more information, see Suppress
Diagnostic Messages Programmatically.

Reduced number of multiplication helper functions
When you generate code for your model, there are now fewer generated multiplication helper
functions. The new multiplication helper functions parameterize the shift amount for multiplication
operations using binary-point scaling, reducing the need for separate functions in the generated
code.

This change results in reduced memory consumption. This reduction in the amount of code generated
from a model aids in the maintainability of your code base.

Improved accuracy of fixed-point sin, cos, and mod functions
The fixed-point sin and cos functions are now more precise. In past releases these calculations were
accurate only to within the top 16 most-significant bits of the input.

13-5

https://www.mathworks.com/help/releases/R2016b/fixedpoint/ug/autoscale-simulink-numerictype-objects.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/deadzone.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/deadzone.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/ratelimiter.html
https://www.mathworks.com/help/releases/R2016b/fixedpoint/ug/how-does-range-analysis-work.html
https://www.mathworks.com/help/releases/R2016b/simulink/ug/suppress-diagnostic-messages.html
https://www.mathworks.com/help/releases/R2016b/simulink/ug/suppress-diagnostic-messages.html

The mod function now has improved accuracy because it no longer limits internally-computed
intermediate types to 32-bits or less.

For more information, see the sin, cos, and mod reference pages.

Improved workflow for collecting and analyzing ranges in the Fixed-
Point Converter app
The Simulate and Derive buttons on the Convert to Fixed Point page of the Fixed-Point Converter
app are now simplified and merged into a single Analyze button. This button controls which ranges
(simulation ranges, design ranges, and derived ranges) are collected and used in the data type
proposal phase of the conversion. When either the Specify design ranges or the Analyze ranges
using derived range analysis options are selected, the Static Min and Static Max columns appear
in the table. These columns do not appear when only the Analyze ranges using simulation option
is selected, simplifying the view of the data. As in previous releases, you can still control which
ranges are used for data type proposal in the Settings pane.

R2016b

13-6

https://www.mathworks.com/help/releases/R2016b/fixedpoint/ref/sin.html
https://www.mathworks.com/help/releases/R2016b/fixedpoint/ref/cos.html
https://www.mathworks.com/help/releases/R2016b/fixedpoint/ref/mod.html

R2016a

Version: 5.2

New Features

Bug Fixes

14

Autoscaling Parameter Objects: Automatically propose and apply data
types for parameter objects
Using the Fixed-Point Tool, you can now propose and apply data types for parameter objects used in
your model. The Fixed-Point Tool detects parameter objects in your model and proposes a fixed-point
data type based on their respective values and ranges. The tool applies the proposed data type to the
parameter object by updating the definition of the parameter object in the base or model workspace.
For more information, see Autoscale Simulink.Parameter Objects.

View and edit fi objects in Model Explorer
You can now view and edit fi objects and their local fimath properties using Model Explorer in
Simulink. You can change the writable properties of fi objects from the Model Explorer. You cannot
change the numeric type properties of fi objects after creation.

Simulate system level designs that integrate referenced models
targeting an assembly of heterogeneous embedded devices
When modeling larger systems, models are often composed of referenced models that target various
embedded devices. You can now simulate a parent system model that includes referenced models

R2016a

14-2

https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/autoscale-simulink-parameter-objects.html

configured with mismatching hardware settings for different embedded devices. In past releases,
Simulink required the hardware settings on referenced models to match to simulate the top-level
model. You can configure the hardware implementation settings in the Configuration Parameters >
Hardware Implementation pane.

Enhancements to Fixed-Point Converter app
Support for arrays of structures

You can now convert arrays of structures to fixed point using the Fixed-Point Converter app. For more
information on language features supported by the Fixed-Point Converter app, see MATLAB
Language Features Supported for Automated Fixed-Point Conversion.

Structures in generated fixed-point code

The Fixed-Point Converter now proposes a unified data type for structures that are similar. Similar
structures are structures which contain fields with the same name, number and type. The Fixed-Point
Converter app no longer generates copies of structures, making the generated fixed-point code more
efficient. See Convert Code Containing Structures to Fixed Point.

Revert changes to input type definitions

You can now revert and restore changes to type definitions in the Define Input Types step of the
Fixed-Point Converter app. You can revert or restore changes in the entry-point input arguments
table or the global variables table.

Use the undo and redo buttons for the table that you want to change. Alternatively, use the keyboard
shortcuts for undo and redo. The keyboard shortcuts apply to the selected table. The shortcuts are
defined in your MATLAB preferences. The default keyboard shortcuts for undo and redo on a
Windows® platform are Ctrl+Z and Ctrl+Y.

View complete error message in error table

In previous releases, the Fixed-Point Converter app truncated a message that did not fit on one line of
the error messages table on the Convert to Fixed-Point step. In R2016a, the app displays a long
message on multiple lines so that you can see the entire message.

Additional keyboard shortcuts in the code generation report

You can now use keyboard shortcuts to perform the following actions in a code generation report.

Action Default Keyboard Shortcut for a Windows
platform

Zoom in Ctrl+Plus
Zoom out Ctrl+Minus
Evaluate selected MATLAB code F9
Open help for selected MATLAB code F1
Step backward through files that you opened in
the code pane

Alt+Right

Refresh F5

14-3

https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/matlab-language-features-supported-for-automated-fixed-point-conversion.html
https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/matlab-language-features-supported-for-automated-fixed-point-conversion.html
https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/convert-code-containing-structures-to-fixed-point.html

Action Default Keyboard Shortcut for a Windows
platform

Find Ctrl+F

Your MATLAB preferences define the keyboard shortcuts associated with these actions. You can also
select these actions from a context menu. To open the context menu, right-click anywhere in the
report.

Changes to Fixed-Point Conversion Code Coverage

If you use the Fixed-Point Converter app to convert your MATLAB code to fixed-point code and
propose types based on simulation ranges, the app shows code coverage results. In previous releases,
the app showed the coverage as a percentage. In R2016a, the app shows the coverage as a line
execution count.

For more information, see Code Coverage.

R2016a

14-4

https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/fixed-point-conversion.html#bt1s0y3

R2015aSP1

Version: 5.0.1

Bug Fixes

15

R2015b

Version: 5.1

New Features

Bug Fixes

16

Simulink Fixed-Point Tool workflow simplification: Propose signedness
and data types for inherited and floating-point types
System under design (SUD) specification

Upon opening the Fixed-Point Tool, you must now select the system under design for fixed-point
conversion. Once selected, the system name will appear highlighted in green in the Model
Hierarchy pane. The Fixed-Point Tool will propose and apply data types for the selected system only.

To change the system under design, click Change. In the dialog, select the system you want to
convert.

Signedness proposals

The Fixed-Point Tool now proposes signedness for blocks in your system under design. To get
signedness proposals for blocks in your model, in the Automatic data typing pane, select the
Signedness check box.

The Fixed-Point Tool bases its signedness proposals on collected range information and block
constraints. Signals that are always strictly positive now get an unsigned data type proposal, gaining
an additional bit of precision compared to previous releases.

By default, the Signedness check box is selected. If you clear the check box, the Fixed-Point Tool
proposes a signed data type for all results that currently specify a floating-point or an inherited
output data type unless other constraints are present. If a result specifies a fixed-point output data
type, the Fixed-Point Tool will propose a data type with the same signedness as the currently
specified data type unless other constraints are present.

Proposals for objects using inherited and floating-point types

You can now elect to receive proposals for objects in your model that use floating-point data types or
one of the inherited data types for block outputs. To get proposals for objects using floating-point or
inherited data types, in the Automatic data typing pane, select the corresponding check boxes.

R2015b

16-2

By default, the Inherited and Floating point check boxes are selected. If you clear the Inherited or
Floating point check boxes, the Fixed-Point Tool will not propose a fixed-point data type for results
that use an inherited or floating-point data type respectively.

Two-way traceability between model and Fixed-Point Tool

You can now trace between Simulink blocks in your model and their corresponding results in the
Fixed-Point Tool. This capability simplifies the task of debugging overflows and other data type
propagation issues in your model. Right-click on a block in your Simulink model and select Fixed-
Point Tool Result to highlight the result in the Contents pane of the Fixed-Point Tool. You can
also trace a result back to the model by right-clicking a result in the Contents pane and selecting
Highlight in Editor.

New configurations for model settings

Under Configure model settings in the Fixed-Point Tool, use the configurations to set up your
model for range collection.

• The Range collection using double override configuration overrides the data types in your
model to doubles and enables instrumentation of your model. Use these settings to collect
simulation ranges using ideal floating-point data types.

• The Range collection with specified data types configuration removes data type override and
enables instrumentation of your model. Use this shortcut to collect simulation ranges using the
data types specified in your model and to validate current behavior.

• The Remove overrides and disable range collection configuration restores your model to its
specified numeric behavior and disables instrumentation to restore maximum speed. Use this
shortcut to clean up model settings after conversion.

16-3

Double-precision to single-precision conversion: Convert double-
precision MATLAB code to single-precision MATLAB code using the
command line
In R2015b, you can use the convertToSingle function to convert double-precision MATLAB code to
single-precision MATLAB code.

You can verify the behavior of a single-precision version of your code without modifying the original
algorithm. When a double precision operation cannot be removed, the report highlights the MATLAB
expression that results in that operation.

For example, to generate single-precision MATLAB code from a double-precision function
myfunction that takes two double arguments:

convertToSingle myfunction -args {1 2}

To use verification options, create a coder.SingleConfig object that you pass to
convertToSingle. You can:

• Test numerics by running the test file with the single-precision types applied.
• Compare double-precision and single-precision test results using the Simulation Data Inspector or

your own plotting functions.

scfg = coder.config('single');
scfg.TestBenchName = 'myfunction_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;
convertToSingle -config scfg myfunction -args {1 2}

If you also have a MATLAB Coder license, you can:

• Generate single-precision C code using the MATLAB Coder app. Use this workflow if your goal is
to generate single-precision C code in the most direct way and you do not want to see the
intermediate single-precision MATLAB code.

• Generate single-precision C code using codegen with the -singleC option. Use this workflow
when you want to generate single-precision C code in the most direct way and you do not want to
see the intermediate single-precision MATLAB code

• Generate single-precision MATLAB code using codegen with a coder.SingleConfig object.
Use this workflow if you want to see the single-precision MATLAB code or use verification options.

• Generate single-precision C code using codegen with a coder.SingleConfig object and a code
configuration object. Use this workflow to generate single-precision C code when you also want to
see the single-precision MATLAB code or use verification options.

For more information about single-precision conversion using MATLAB Coder, see the MATLAB Coder
release notes.

MATLAB Fixed-Point Converter app streamlined workflow: Restore
project state and minimize regeneration of MEX files
Saving and restoring fixed-point conversion workflow state in the app

If you close a project before completing the fixed-point conversion process, the app saves your work.
When you reopen the project, the app restores the state. You do not have to repeat the fixed-point

R2015b

16-4

conversion steps that you completed in a previous session. For example, suppose you close the
project after data type proposal. When you reopen the project, the app shows the results of the data
type proposal and enables conversion. You can continue where you left off.

Minimized regeneration of MEX files

The Fixed-Point Converter app now optimizes when it regenerates MEX files. The app will only
rebuild the MEX file when required by changes in your code.

Specification of additional fimath properties in app editor

You can now control all fimath properties of variables in your code from within the Fixed-Point
Converter app editor. To modify the fimath settings of a variable, select a variable and click
FIMATH in the dialog that appears. You can alter the Rounding method, Overflow action, Product
mode, and Sum mode properties. You can also modify these properties from the settings pane. For
more information on these properties, see fimath.

Improved management of comparison plots

The Fixed-Point Converter app now docks plots generated during the testing phase of your fixed-point
code into separate tabs of one figure window. Each tabbed figure represents one input or output
variable and is labeled with the function, variable, word length, and a timestamp. Each tab contains
three sub plots. The plots use a time series based plotting function to show the floating-point and
fixed-point results and the difference between them.

Subsequent iterations are also plotted in the same figure window.

16-5

https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/fimath.html

Variable specializations

On the Convert to Fixed Point page, in the Variables table of the app, you can now view variable
specializations.

R2015b

16-6

Improvements to Readability of Generated Code

Structs

• When struct copies exist in the design, a separate function is now created to perform the copy.
• Copies of structs are now avoided when the types of all fields match, improving both readability

and efficiency of the generated code.

fimath

• fimath settings are now specified in a separate function to improve the readability of the
generated fixed-point code.

• To avoid a mismatch of fimath settings in an expression, the generated code now uses the
removefimath function.

function [y] = my_add_fixpt(a,b)
%Adds a and b
fm = getConversionFimath();

y=fi(removefimath(a)+b, 0, 8, 0, fm);
end

16-7

https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/fimath.html
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/removefimath.html

function fm = getConversionFimath()
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);
end

Matrices

Growth and deletion of matrices within a design are now supported for fixed-point conversion.

function matrix_deletion_fixpt(a,i)
 fm = getConversionFimath();

 var = fi([1, 2, 3], 0, 2, 0, fm);
 coder.varsize('var');
 var(2) = []; % matrix deletion.
 var(2) = fi(2, 0, 2, 0, fm);
end

function [out] = matrix_growth_fixpt(x)
 fm = getConversionFimath();
 out = fi([], 0, 4, 0, fm);
 for ii = 1:10
 out = [out x];
 end
end

Tab completion for specifying files

On the Select Source Files and Define Input Types pages of the Fixed-Point Converter app, you
can now use tab completion to specify your entry-point functions and test bench file.

Improvements for manual type definition

Improvements for manual type definition include:

• New right-click menus options to specify array size.

• Easier definition of structure types. You can:

• Use the new icon to add fields.
• See the structure type name in the table of input variables.

R2015b

16-8

• Easier definition of embedded.fi types. You can:

• See the numerictype properties in the table of input variables.

• Use the new icon to change the numerictype properties.

Compatibility between the app colors and MATLAB preferences

The app uses colors that are compatible with the Desktop tool colors preference in the MATLAB
preferences. For information about MATLAB preferences, see Preferences.

Range analysis for Delay blocks: Improve accuracy and speed of range
analysis on models using Delay blocks
Using the Fixed-Point Tool, you can now derive ranges for models that use Delay blocks with greater
precision. The Fixed-Point Tool can also derive ranges for certain configurations of cascading Delay
blocks with greater theoretical accuracy and speed. For more information on range analysis in the
Fixed-Point Tool, see How Range Analysis Works.

Control of signed shifts in fixed-point scaling operations: Control the
use of signed shifts in generated code
You can now control the use of signed right shifts in your generated code. Some coding standards do
not allow bitwise operations on signed integers. Disabling the use of signed shifts in generated code
increases the likelihood of compliance with MISRA. When you specify that signed right shifts should
not be used in your generated code, the software replaces signed shifts with a call to a function that
performs the operation without the use of signed shifts.

This feature requires an Embedded Coder license.

MATLAB

To specify that MATLAB Coder not use signed right shifts:

• Using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the Generate arrow
.

2 Set Build type to one of the following:

• Source Code
• Static Library (.lib)
• Dynamic Library (.dll)
• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, clear the Allow right shifts on signed integers check box.

• Using the command-line interface:

16-9

https://www.mathworks.com/help/releases/R2015b/matlab/matlab_env/preferences.html
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/how-does-range-analysis-work.html

1 Create a code configuration object for 'lib', 'dll', or 'exe'.

cfg = coder.config('lib','ecoder',true); % or dll or exe

2 Set the EnableSignedRightShifts property to false.

cfg.EnableSignedRightShifts = false;

Simulink

To specify that the code generator not use signed right shifts, in the Configuration Parameters dialog
box, on the Code Generation > Code Style pane, clear Allow right shifts on signed integers or set
the parameter EnableSignedRightShifts to off.

To improve coding standard compliance for bitwise operations on signed integers, run the following
checks:

• Check for bitwise operations on signed integers - Check to identify blocks that contain bitwise
operations on signed integers.

• Check configuration parameters for MISRA C:2012 - Check that verifies that you cleared Code
Generation > Code Style > Allow right shifts on signed integers.

Access full-precision value of fi object in decimal and string format
You can now set and get full-precision real-world values of fi objects using the new Value property.
This provides easy access to exact values in decimal format.

The tostring function now accepts fi object inputs allowing you to convert fi objects to a string
that you can copy and paste into a MATLAB script or function. The mat2str function now also
supports fi object inputs allowing you to convert fi objects to strings without first converting to a
double value.

Detection of multiword operations
When an operation has an input or output larger than the largest word size of your processor, the
generated code contains multiword operations. Multiword operations can be inefficient on hardware.
In both MATLAB and Simulink, you can now detect operations that will result in multiword code.

MATLAB

The expensive fixed-point operations check now highlights expressions in your MATLAB code that
could result in multiword operations in generated code. For more information on enabling this check,
see Find and Address Multiword Operations.

Simulink

The Identify questionable fixed-point operations check in the Model Advisor now detects multiword
operations in generated code. For more information, see Identify Questionable Fixed-Point
Operations.

R2015b

16-10

https://www.mathworks.com/help/releases/R2015b/ecoder/ref/code-generation-pane-code-style.html#buu8gwr-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/fi.html
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/tostring.html
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/mat2str.html
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/data-type-issues-in-generated-code_buhkuhq-1.html#buth98k
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/optimizing-your-generated-code-with-the-model-advisor.html#bt225cr-1
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/optimizing-your-generated-code-with-the-model-advisor.html#bt225cr-1

Enhanced Model Advisor check for implementing strict single-
precision designs
The Model Advisor Modeling Single-Precision Systems > Identify questionable operations for
strict single-precision design check now verifies the status of additional model settings that will
help you achieve a strict single-precision design.

• The Model Advisor warns you if Configuration Parameters > Optimization > Default for
underspecified data type is set to Double.

• The Model Advisor warns you if your model uses library standard that is not optimal for strict-
single precision designs.

• The Model Advisor warns you if Configuration Parameters > Optimization > Implement
logic signals as Boolean data is not selected.

The settings suggested by the Model Advisor prevent the introduction of doubles into your
generated code, which is optimal for strict-single designs.

System object instrumentation in Fixed-Point Tool
The Fixed-Point Tool now collects simulation ranges and proposes data types for select DSP System
Toolbox™ System objects used inside a MATLAB Function block. You cannot propose data types based
on derived range data.

Use of these System objects requires a DSP System Toolbox license. To learn more about using the
Fixed-Point Tool to convert System objects and to learn which System objects are supported, see
Convert a System Object to Fixed Point Using the Fixed-Point Tool.

16-11

https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/convert-a-system-object-to-fixed-point-using-the-fixed-point-tool.html

R2015a

Version: 5.0

New Features

Bug Fixes

17

Derived Ranges for MATLAB Function Blocks in Simulink
Using the Fixed-Point Tool, you can now derive ranges for variables inside a MATLAB Function block
in Simulink. The Fixed-Point Tool uses design ranges to derive ranges for MATLAB variables in a
MATLAB Function block. The tool can also propose data types for the variables based on the derived
range data. You must manually apply the proposed data types to the variables. For more information,
see Derive Ranges of MATLAB Function Block Variables.

Fixed-Point Converter app enhancements, including detection of dead
and constant folded code, support for projects with multiple entry
point functions and support for global variables
The following enhancements have been added to the Fixed-Point Converter app:

Support for projects with multiple entry-point functions

You can now specify multiple entry-point functions in a Fixed-Point Converter app project. If your end
goal is to generate fixed-point C/C++ library functions, conversion with multiple entry-point functions
facilitates integration with larger applications. For more information, see Generate Fixed-Point
MATLAB Code for Multiple Entry-Point Functions.

Support for global variables

You can now specify global variables in the Fixed-Point Converter app workflow and convert
algorithms which contain global variables without modifying your code. For more information, see
Convert Code Containing Global Variables to Fixed-Point.

Code coverage based translation

The Fixed-Point Converter app now detects dead and constant folded code within your project and
warns you if any parts of your code were not executed during the simulation of your test file. This can
help you verify if your test file is testing the algorithm over the intended operating range. The app
uses this code coverage information during the translation of your code from floating-point MATLAB
code to fixed-point MATLAB code. The app inserts inline comments in the fixed-point code to mark
the dead and untranslated regions and includes the code coverage information in the generated fixed-
point conversion html report. This code coverage information is also available from the command-line
workflow. For more information, see Detect Dead and Constant-Folded Code.

Conversion from project to MATLAB scripts for command-line fixed-point conversion

Using the -tocode option of the fixedPointConverter command, you can convert a fixed-point
conversion project to the equivalent MATLAB code in a MATLAB script. You can use the script to
repeat the project workflow in a command-line workflow. For more information, see Convert Fixed-
Point Conversion Project to MATLAB Scripts.

Generated fixed-point code enhancements

The generated fixed-point code now:

• Uses colon syntax for multi-output assignments, reducing the number of fi casts in the generated
fixed-point code.

• Preserves the indentation and formatting of your original algorithm, improving the readability of
the generated fixed-point code.

R2015a

17-2

https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/derive-ranges-of-matlab-function-block-variables.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/generate-fixed-point-matlab-code-for-multiple-entry-point-functions.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/generate-fixed-point-matlab-code-for-multiple-entry-point-functions.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/convert-code-containing-global-variables-to-fixed-point.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/detect-dead-and-constant-folded-code.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/convert-fixed-point-conversion-project-to-matlab-scripts.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/convert-fixed-point-conversion-project-to-matlab-scripts.html

Integration with MATLAB Coder app interface

The Fixed-Point Converter app has been integrated into the new MATLAB Coder app workflow. This
integration allows for a smoother conversion process from floating-point MATLAB code to fixed-point
C/C++ code.

Automated conversion of additional DSP System objects using the
Fixed-Point Converter app
You can now convert the following DSP System Toolbox System objects to fixed-point using the Fixed-
Point Converter app:

• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter, direct form and direct form transposed only
• dsp.LUFactor
• dsp.VariableFractionalDelay
• dsp.Window

You can propose and apply data types for these System objects based on simulation range data.
During the conversion process, you can view simulation minimum and maximum values and proposed
data types for these System objects. You can also view whole number information and histogram data.
You cannot propose data types for these System objects based on static range data. This requires a
DSP System Toolbox license.

Fixed-Point SimState logging and root logging improvements
The Simulink SimState feature allows you to save all run-time data necessary for restoring the
simulation state of the model. A SimState includes both the logged and internal state of every block
and the internal state of the Simulink engine. The Fixed-Point Tool now supports SimState logging
while fixed-point instrumentation is turned on. For more information, see Save and Restore
Simulation State as SimState.

Flexible structure assignment of buses
When a non-tunable structure is assigned to a bus signal (such as a block which uses a structure for
its initial condition parameter), the data type of the fields of the structure no longer need to match
the data type of the bus elements. The software now performs an automatic casting of the data type
of the structure field so that it matches the data type of the bus signal. This flexible structure
assignment simplifies the fixed-point conversion workflow by automatically casting the data type of
the fields of the structure when using data type override and autoscaling your model.

eye(m,'like',a) syntax supported for fixed-point inputs
The eye function now works with fixed-point data types as well as built-in data types. The function
can now return an output whose class matches that of a specified numeric variable or fi object. For
built-in data types, the output assumes the numeric data type, sparsity, and complexity (real or
complex) of the specified numeric variable. For fi objects, the output assumes the numerictype,
complexity (real or complex), and fimath of the specified fi object.

17-3

https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lufactor-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.variablefractionaldelay-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.window-class.html
https://www.mathworks.com/help/releases/R2015a/simulink/ug/saving-and-restoring-the-simulation-state-as-the-simstate.html
https://www.mathworks.com/help/releases/R2015a/simulink/ug/saving-and-restoring-the-simulation-state-as-the-simstate.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ref/eye.html

New interpolation method for generating lookup table MATLAB
function replacements
The coder.approximation function now offers a 'Flat' interpolation method for generating
lookup table MATLAB function replacements. This fully-specified lookup table achieves high speeds
by discarding the pre-lookup step and reducing the use of multipliers in the data path. This
interpolation method is available from both the command-line workflow, and in the Function
Replacements tab of the Fixed-Point Converter app.

Fixed-point scaling information in Code Interface Report
Fixed-point scaling information is added to the code generation report in the Code Interface Report
section. Better accessibility to this information makes it easier for you to integrate with generated
code containing fixed-point data types. Each fixed-point entry in the report table has a value in the
new Scaling column giving its data type and fraction length using Simulink fixed-point data type
notation.

Access to the Code Interface Report requires an Embedded Coder license.

R2015a

17-4

https://www.mathworks.com/help/releases/R2015a/fixedpoint/ref/coder.approximation.html

R2014b

Version: 4.3

New Features

Bug Fixes

Compatibility Considerations

18

Fixed-Point Converter app for automated conversion of floating-point
MATLAB code
The Fixed-Point Converter app enables you to convert floating-point MATLAB code to fixed-point
MATLAB code.

You can choose to propose data types based on simulation range data, static range data, or both.

During fixed-point conversion, you can:

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Test numerics by running the test file with the fixed-point types applied.
• Compare floating-point and fixed-point test results using the Simulation Data Inspector or your

own plotting functions.
• View a histogram of bits used by each variable.
• Specify replacement functions and generate approximate functions for functions in the original

MATLAB algorithm that are not supported for fixed point.

To open the app:

•
In the MATLAB Toolstrip, on the Apps tab, under Code Generation, click .

• At the MATLAB command prompt, enter fixedPointConverter.

For more information, see Fixed-Point Converter.

Commands for scripting fixed-point conversion and accessing the
collected data in Simulink
You can now use the DataTypeWorkflow.Converter class to collect simulation and derived data,
propose and apply data types to the model, and analyze results.

This class performs the same fixed-point conversion tasks as the Fixed-Point Tool. This facilitates
scripting of the automatic conversion workflow and accessing data for analysis. For more information,
see Convert a Model to Fixed Point Using the Command-Line.

Automated fixed-point conversion for commonly used DSP System
objects, including Biquad Filter, FIR Filter, and FIR Rate Converter
You can now convert the following DSP System Toolbox System objects to fixed point using the Fixed-
Point Converter app.

• dsp.BiquadFilter
• dsp.FIRFilter, direct form only
• dsp.FIRRateConverter

R2014b

18-2

https://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/fixedpointconverter-app.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-model-sing-the-command-line.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firrateconverter-class.html

• dsp.LowerTriangularSolver
• dsp.UpperTriangularSolver
• dsp.ArrayVectorAdder

You can propose and apply data types for these System objects based on simulation range data.
During the conversion process, you can view simulation minimum and maximum values and proposed
data types for these System objects. You can also view whole number information and histogram data.
You cannot propose data types for these System objects based on static range data. This requires a
DSP System Toolbox license. For more information, see Convert a System object to Fixed-Point Using
the Fixed-Point Converter App.

Simulation range collection and data type proposals for MATLAB
Function blocks in Simulink
The Fixed-Point Tool can now collect and display simulation ranges for variables inside a MATLAB
Function block. The tool can also propose data types for the variables based on the simulation data.
You must manually apply the proposed data types to the variables. For more information, see Convert
Model Containing MATLAB Function Block to Fixed Point.

Overflow diagnostics to distinguish between wrap and saturation in
Simulink
You can now separately control the diagnostics for overflows that wrap and overflows that saturate by
setting each diagnostic to error, warning, or none. These controls simplify debugging models in
which only one type overflow is of interest. For example, if you need to detect only overflows that
wrap, in the Data Validity pane of the Configuration Parameters dialog box you can set Wrap on
overflow to error or warning, and set Saturate on overflow to none.

Highlighting of potential data type issues in generated HTML report
You can now highlight potential data type issues in the generated HTML report. The report highlights
MATLAB code that requires single-precision, double-precision, or expensive fixed-point operations.
The expensive fixed-point operations check identifies optimization opportunities by highlighting
expressions in the MATLAB code that require cumbersome multiplication or division, or expensive
rounding.

For more information, see Find Potential Data Type Issues in Generated Code

Code generation of for loops using fixed-point loop indices
Fixed-point data types are now supported as for-loop indices in codegen. This capability requires a
MATLAB Coder license. For more information, see for.

Cast net slope computations using rational numbers
This new option improves the numerical accuracy and the readability of the C code generated for
certain fixed-point conversions having nonbinary net slopes. Normally, net slope computation uses an
integer multiplication followed by shifts. Enabling this optimization replaces the multiply and shift
operation with a multiply and divide sequence that uses a rational number under certain simplicity
and accuracy conditions.

18-3

https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.lowertriangularsolver-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.uppertriangularsolver-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.arrayvectoradder-class.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-dsp-firfilter-object-to-fixed-point-using-the-fixed-point-converter-app.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-dsp-firfilter-object-to-fixed-point-using-the-fixed-point-converter-app.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-model-with-a-matlab-function-block-to-fixed-point.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-model-with-a-matlab-function-block-to-fixed-point.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/data-type-issues-in-generated-code_buhkuhq-1.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/for.html

For example, applying a net slope of 0.9, which traditionally would have generated

Vc = (int16_T)(Va * 115 >> 7);

becomes

Vc = (int16_T)(Va * 9/10);

This optimization affects both simulation and code generation. For more information, see Handle Net
Slope Computation.

Lock Column View option in the Fixed-Point Tool
This option prevents the Fixed-Point Tool from automatically changing the column view of the
contents pane. To enable this option, in the Fixed-Point Tool menu, click View > Lock Column View.
This setting is preserved across sessions.

Fixed-Point Advisor enhancements
• Improved support for interaction with Simulink data objects, including bus objects
• Block replacement recommendations for blocks with CORDIC support

hdlram renamed hdl.RAM
The hdlram System object has been renamed hdl.RAM. This System object no longer requires a
Fixed-Point Designer license.

Compatibility Considerations
If you open a design that uses hdlram, the software displays a warning. For continued compatibility
with future releases, replace instances of hdlram with hdl.RAM.

Changes to data type strings
Signal data type display

Signals using fixed-point data types with slope and bias scaling now always display the slope value in
the data type name. In previous releases, the display decomposed the slope into slope adjustment
factor and fixed exponent when it led to a more compact string. For example, the data type
fixdt(1,32,0.01953125,0) now gets the name sfix32_S0p01953125. In previous releases, the
name was in the decomposed format sfix32_F1p25_en6.

tostring function now uses 0 and 1 to represent signedness

The string representation of numerictype and fixdt objects returned by the tostring function
now use 0 and 1 to represent signedness rather than true and false.

T = numerictype(true,16,15);
T.tostring

ans =

numerictype(1,16,15)

R2014b

18-4

https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/optimizing-your-generated-code.html#br8zpf1-1
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/optimizing-your-generated-code.html#br8zpf1-1
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/tostring.html

When programmatically processing data types, best practice is to convert string representations to
numerictype objects. The string changes for this release do not change the object that the strings
are converted to. To convert a data type name string to an object, pass the string as the input
argument to fixdt or numerictype. For example, fixdt('sfix32_S0p01953125') and
fixdt('sfix32_F1p25_En6') return identical numerictype objects. To convert the results of the
tostring function back to an object, use the eval function. For example, the numerictype objects
returned by eval('numerictype(1,16,15)') and eval('numerictype(true,16,15)') are
identical.

Compatibility Considerations
If your code converts data type strings to objects before doing any processing, then you will not have
any compatibility issues related to the string changes. If you depend on the exact text returned by the
tostring function or the exact text of a Simulink data type name, then you must modify your code to
account for the changes described here. Alternatively, you can convert the string to a numerictype
object before doing any additional processing.

New featured examples
The Fixed-Point Conversion Using Fixed-Point Tool and Derived Range Analysis example
demonstrates using derived range analysis and the Fixed-Point Tool to convert a corner detection
model to fixed point.

18-5

https://www.mathworks.com/help/releases/R2014b/matlab/ref/eval.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/examples/fixed-point-conversion-using-fixed-point-tool-and-derived-range-analysis.html

R2014a

Version: 4.2

New Features

Bug Fixes

19

Data type override and automatic data typing for bus objects
Data type override for bus objects

You can now apply data type override to models and subsystems that use virtual and non-virtual
buses. The bus element types obey the data type override settings. This capability allows you to:

• Obtain the idealized floating-point behavior of models that use buses.
• Obtain the ideal derived ranges for models that use buses.
• Easily compare the idealized floating-point behavior with the fixed-point behavior of models that

use buses.
• Use data type override to share fixed-point models that use buses with users who do not have a
fixed-point license.

Autoscaling for bus objects

You can autoscale models that use virtual and non-virtual buses. This capability facilitates fixed-point
conversion and optimization of models. The Fixed-Point Tool automatically proposes fixed-point data
types for bus elements which removes the need to perform manual analysis and conversion of bus
element data types.

For more information, see Refine Data Types of a Model with Buses Using Simulation Data.

Derived ranges for complex signals in Simulink
Using the Fixed-Point Tool, you can now derive ranges for complex signals in Simulink. For more
information, see Conversion Using Range Analysis.

cordicsqrt function for fixed-point CORDIC-based square root
functionality
The cordicsqrt function provides a CORDIC-based approximation of square root for use in fixed-
point applications. For more information, see cordicsqrt and Compute Square Root Using CORDIC.

Overflow detection with scaled double data types in MATLAB Coder
projects
The MATLAB Coder Fixed-Point Conversion tool now provides the capability to detect overflows. At
the numerical testing stage in the conversion process, the tool simulates the fixed-point code using
scaled doubles. It then reports which expressions in the generated code produce values that would
overflow the fixed-point data type. For more information, see Detect Overflows Using the Fixed-Point
Conversion Tool and Detecting Overflows.

You can also detect overflows when using the codegen function. For more information, see
coder.FixptConfig and Detect Overflows at the Command Line.

These capabilities require a MATLAB Coder license.

R2014a

19-2

https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/perform-fixed-to-fixed-conversion-using-simulation-data.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/conversion-using-range-analysis.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ref/cordicsqrt.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/compute-square-root-using-cordic-hyperbolic-kernel.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/detect-overflows-during-automated-conversion.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/detect-overflows-during-automated-conversion.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/fixed-point-conversion.html#bt9yuxb
https://www.mathworks.com/help/releases/R2014a/coder/ref/coder.fixptconfig-class.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/detect-overflows-at-the-command-line.html

Fixed-point ARM Cortex-M code replacement support for DSP System
Toolbox FIR filters
Fixed-point ARM Cortex®-M code replacement library support is now available for the Discrete FIR
block and the dsp.FIRFilter System object.

These capabilities require a DSP System Toolbox license.

Fixed-Point Advisor support for referenced configuration sets
The Fixed-Point Advisor now supports referenced configuration sets. For more information, see
Preparing for Data Typing and Scaling.

Enhancements to automated conversion of MATLAB code
R2014a includes the following enhancements to the fixed-point conversion capability in MATLAB
Coder projects.

These capabilities require a MATLAB Coder license.

Support for MATLAB classes

You can now use the MATLAB Coder Fixed-Point Conversion tool to convert floating-point MATLAB
code that uses MATLAB classes. For more information, see Fixed-Point Code for MATLAB Classes.

Generated fixed-point code enhancements

The generated fixed-point code now:

• Uses subscripted assignment (the colon(:) operator). This enhancement produces concise code
that is more readable.

• Has better code for constant expressions. In previous releases, multiple parts of an expression
were quantized to fixed point. The final value of the expression was less accurate and the code
was less readable. Now, constant expressions are quantized only once at the end of the evaluation.
This new behavior results in more accurate results and more readable code.

For more informations, see Generated Fixed-Point Code.

Fixed-point report

In R2014a, when you convert floating-point MATLAB code to fixed-point C/C++ code, the code
generation software generates a fixed-point report in HTML format. For the variables in your
MATLAB code, the report provides the proposed fixed-point types and the simulation or derived
ranges used to propose those types. For a function, my_fcn, and code generation output folder,
out_folder, the location of the report is out_folder/my_fcn/fixpt/
my_fcn_fixpt_Report.html. If you do not specify out_folder in the project settings or as an
option of the codegen command, the default output folder is codegen.

Automatic C compiler setup
In earlier releases, to set up a compiler before using fiaccel to accelerate MATLAB algorithms, you
were required to run mex -setup. Now, the code generation software automatically locates and uses

19-3

https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/prepare-for-data-typing-and-scaling.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/generating-fixed-point-code-for-matlab-classes.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/generated-fixed-point-code.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ref/fiaccel.html

a supported installed compiler. You can use mex -setup to change the default compiler. See
Changing Default Compiler.

More flexible control of dsp.LMSFilter System object fixed-point
settings
For all dsp.LMSFilter System object fixed-point settings, you can now specify independent fixed-
point data types.

This capability requires a DSP System Toolbox license.

Derived ranges for For Each and For Each Subsystem blocks
Range analysis supports For Each and For Each Subsystem blocks, with the following limitations:

• When For Each Subsystem contains another For Each Subsystem, not supported.
• When For Each Subsystem contains one or more Simulink Design Verifier™ Test Condition, Test

Objective, Proof Assumption, or Proof Objective blocks, not supported.

R2014a

19-4

https://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.lmsfilter-class.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/foreach.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/testcondition.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/testobjective.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/testobjective.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/proofassumption.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/proofobjective.html

R2013b

Version: 4.1

New Features

Bug Fixes

Compatibility Considerations

20

C99 long long integer data type for embedded code generation
If your target hardware and your compiler support the C99 long long integer data type, you can use
this data type for code generation. Using long long results in more efficient generated code that
contains fewer cumbersome operations. Multi-line fixed-point helper functions can be replaced by
simple expressions. This data type also provides more accurate simulation results for fixed-point and
integer simulations. If you are using Microsoft® Windows (64-bit), using long long improves
performance for many workflows including:

• Using Accelerator mode in Simulink
• Working with Stateflow® software
• Generating C code with Simulink Coder
• Accelerating fixed-point code using fiaccel
• Generating C code and MEX functions with MATLAB Coder

For more information about enabling long long in Simulink, see the Enable long long and Number
of bits: long long configuration parameters on the Hardware Implementation Pane.

For more information about enabling long long for MATLAB Coder, see
coder.HardwareImplementation.

Model Advisor fixed-point checks with additional coverage and
optimization awareness
The Model Advisor fixed-point checks now cover additional blocks in base Simulink and System
Toolboxes. The checks also now include the MATLAB Function block, System objects, Stateflow, and
fi objects. These improved checks consider model settings such as hardware configuration and code
generation settings. These updated checks also avoid false negative results.

These checks require an Embedded Coder license.

For more information, see:

• Identify blocks that generate expensive rounding code
• Identify questionable fixed-point operations
• Identify blocks that generate expensive fixed-point and saturation code

fi object as an index in colon expressions and an argument to numel
and bit index functions
fi object as an index in colon expressions

You can now use fi objects in colon expressions. When you use fi in a colon expression, all colon
operands must have integer values. See the fi and colon reference pages for examples.

fi objects as bit index input argument

The bitget, bitset, bitsliceget, bitandreduce, bitorreduce, and bitxorreduce functions
now accept fi objects as the bit index argument.

R2013b

20-2

https://www.mathworks.com/help/releases/R2013b/simulink/gui/hardware-implementation-pane.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.hardwareimplementationclass.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-21
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-23
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#btzunno-1
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/fi.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/colon.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitget.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitset.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsliceget.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitandreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitorreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitxorreduce.html

fi objects as shift-value input argument

The bitsra, bitsrl, bitsll, bitrol, and bitror functions now accept fi objects as the shift-
value input argument. You can use fi and built-in data type shift values interchangeably in MATLAB
functions. This new capability facilitates fixed-point conversion.

numel function support for fi inputs

Effective R2013b, the numel function returns the number of elements in a fi array. Using numel in
your MATLAB code returns the same result for built-in types and fi objects. Use numel to write data-
type independent MATLAB code for array handling; you no longer need to use the
numberofelements function.

The numel function is supported for simulation and code generation and with the MATLAB Function
block in Simulink.

For more information, see numel.

Improved efficiency of data type internal rules for Lookup Table blocks
Blocks in the Lookup Tables library have a new internal rule for fixed-point data types to enable faster
hardware instructions for intermediate calculations (with the exception of the Direct Lookup Table (n-
D), Prelookup and Lookup Table Dynamic blocks). To use this new rule, select Speed for the Internal
Rule Priority parameter in the dialog box. To use the R2013a internal rule, select Precision.

Derived ranges for complex variables in MATLAB Coder projects
Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can now derive ranges for
complex variables. For more information, see Propose Data Types Based on Derived Ranges. This
capability requires a MATLAB Coder license.

Simplified modeling of single-precision designs
Fixed-Point Designer now uses strict single-precision algorithms for operations between singles and
integer or fixed-point data types. Operations, such as cast, multiplication and division, use single-
precision math instead of introducing higher-precision doubles for intermediate calculations in
simulation and code generation. You no longer have to explicitly cast integer or fixed-point inputs of
these operations to single precision. To detect the presence of double data types in your model, use
the Model Advisor Identify questionable operations for strict single-precision design check.

Compatibility Considerations
In R2013b, for both simulation and code generation, Fixed-Point Designer avoids the use of double
data types to achieve strict single design for operations between singles and integers or fixed-point
types. In previous releases, Fixed-Point Designer used double data types in intermediate calculations
for higher precision. You might see a difference in numerical behavior of an operation between earlier
releases and R2013b.

For example, when you cast from a fixed-point or integer data type to single or vice versa, the type
used for intermediate calculations can significantly affect numerical results. Consider:

20-3

https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsra.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsrl.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsll.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitrol.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitror.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numel.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink-checks_bq6d4aa-1.html#btzpiip-1

• Input type: ufix128_En127
• Input value: 1.999999999254942 — Stored integer value is (2^128 -2^100).
• Output type: single

Release Calculation performed by Fixed-Point Designer Output
Result

Design Goal

R2013b Y = single(2^-127) * single(2^128-2^100)
= single(2^-127) * Inf

Inf Strict singles

Previous
releases

Y = single(double(2^-127) * double(2^128 -
2^100))
= single(2^-127 * 3.402823656532e+38)

2 Higher-precision
intermediate
calculation

There is also a difference in the generated code. Previously, Fixed-Point Designer allowed the use of
doubles in the generated code for a mixed multiplication that used single and integer types.

m_Y.Out1 = (real32_T)((real_T)m_U.In1*(real_T)m_U.In2);

In R2013b, it uses strict singles.

m_Y.Out1=(real32_T)m_U.In1*m_U.In2;

You can revert to the numerical behavior of previous releases, if necessary. To do so, insert explicit
casting from integer and fixed-point data types to doubles for the inputs of these operations.

Range analysis support on Mac platforms
You can now perform derived range analysis of your model on Mac platforms. For more information,
see Conversion Using Range Analysis.

Changes to showInstrumentationResults function options
New option to suppress display of MATLAB code

When generating a printable instrumentation report, you can now choose to display only the tables
that show information about logged variables. Used with the -printable option, the -nocode
option suppresses display of the MATLAB code. Displaying only the logged variable information is
useful for large projects with many lines of code.

Removal of -browser option

The showInstrumentationResults function -browser option has been removed. Use the -
printable option instead. The -printable option creates a printable report and opens it in the
system browser.

For more information, see showInstrumentationResults.

R2013b

20-4

https://www.mathworks.com/help/releases/R2013b/fixedpoint/conversion-using-range-analysis.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/showinstrumentationresults.html

Changes to Continuous state-space block family range analysis
support
The Continuous Simulink blocks State-Space, Transfer Fcn, and Zero-Pole are not supported and not
stubbable for range analysis. For more information on blocks that are supported for range analysis,
see Supported and Unsupported Simulink Blocks.

Compatibility Considerations
If you have a model that contains one or more continuous State-Space, Transfer Fcn, or Zero-Pole
blocks, your model is incompatible with range analysis. Consider analyzing smaller portions of your
model to work around this incompatibility.

Enhanced fiaccel support for int64 and uint64 functions
The fiaccel function now supports int64 and uint64 with fi inputs.

Support for LCC compiler on Microsoft Windows (64-bit) machines
If you are using Microsoft Windows (64-bit), LCC-64 is now available as the default compiler. You no
longer have to install a separate compiler to perform fixed-point acceleration using fiaccel.

Warning for use of inexact fi and fimath property names
All fi and fimath property names are case sensitive and require that you use the full property
names. Effective R2013b, if you use inexact property names, Fixed-Point Designer generates a
warning.

Compatibility Considerations
To avoid seeing warnings for fi and fimath properties, update your code so that it uses the full
names and correct cases of all these properties. The full names and correct cases of the properties
appear when you display a fi or fimath object on the MATLAB command line.

Conversion of numeric variables into Simulink.Parameter objects
You can now convert a numeric variable into a Simulink.Parameter object using a single step.
% Define numerical variable in base workspace
myVar = 5;
%
% Create data object and assign variable value to data object value
myObject = Simulink.Parameter(myVar);

Previously, you did this conversion using two steps.
% Define numerical variable in base workspace
myVar = 5;
%
% Create data object
myObject = Simulink.Parameter;
%
% Assign variable value to data object value
myObject.Value = myVar;

20-5

https://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/simulink-block-support.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/int64.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/uint64.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/fiaccel.html

Fixed-point conversion test file coverage results
The MATLAB Coder Fixed-Point Conversion tool now provides test file coverage results. After
simulating your design using a test file, the tool provides an indication of how often the code is
executed. If you run multiple test files at once, the tool provides the cumulative coverage. This
information helps you determine the completeness of your test files and verify that they are
exercising the full operating range of your algorithm. The completeness of the test file directly affects
the quality of the proposed fixed-point types.

This capability requires a MATLAB Coder license.

For more information, see Code Coverage.

Fixed-point conversion workflow supports designs that use
enumerated types
Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can now propose data types for
enumerated data types using derived and simulation ranges.

For more information, see Propose Fixed-Point Data Types Based on Derived Ranges and Propose
Fixed-Point Data Types Based on Simulation Ranges. This capability requires a MATLAB Coder
license.

Fixed-point conversion of variable-size data using simulation ranges
Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can propose data types for
variable-size data using simulation ranges.

For more information, see Propose Fixed-Point Data Types Based on Simulation Ranges. This
capability requires a MATLAB Coder license.

Error checking improvements for bitconcat, bitandreduce,
bitorreduce, bitxorreduce, bitsliceget functions
The bitconcat, bitandreduce, bitorreduce, bitxorreduce, and bitsliceget functions now
check that all input arguments are real. If any inputs are complex, these functions generate an error.

The bitconcat function now generates an error in the unary syntax case, bitconcat(a), if the
input argument a is a scalar or is empty. To use bitconcat with one input argument, the argument
must have more than one array element available for bit concatenation (that is, length(a)>1).

Legacy data type specification functions return numeric objects
In previous releases, the following functions returned a MATLAB structure describing a fixed-point
data type:

• float
• sfix
• sfrac

R2013b

20-6

https://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/test-file-coverage.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitconcat.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitandreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitorreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitxorreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsliceget.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/float.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/sfix.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/sfrac.html

• sint
• ufix
• ufrac
• uint

Effective R2013b, they return a Simulink.NumericType object. If you have existing models that use
these functions as parameters to dialog boxes, the models continue to run as before and there is no
need to change any model settings.

These functions do not offer full Data Type Assistant support. To benefit from this support, use fixdt
instead.

Function Return Value in
Previous Releases
— MATLAB structure

Return Value Effective R2013b — NumericType

float('double') Class: 'DOUBLE' DataTypeMode: 'Double'
float('single') Class: 'SINGLE' DataTypeMode: 'Single'
sfix(16) Class: 'FIX'

 IsSigned: 1
 MantBits: 16

DataTypeMode: 'Fixed-point: unspecified scaling'
 Signedness: 'Signed'
 WordLength: 16

ufix(7) Class: 'FIX'
 IsSigned: 0
 MantBits: 7

DataTypeMode: 'Fixed-point: unspecified scaling'
 Signedness: 'Unsigned'
 WordLength: 7

sfrac(33,5) Class: 'FRAC'
 IsSigned: 1
 MantBits: 33
 GuardBits: 5

DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Signed'
 WordLength: 33
 FractionLength: 27

ufrac(44) Class: 'FRAC'
 IsSigned: 0
 MantBits: 44
 GuardBits: 0

DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 44
 FractionLength: 44

sint(55) Class: 'INT'
 IsSigned: 1
 MantBits: 55

DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Signed'
 WordLength: 55
 FractionLength: 0

uint(77) Class: 'INT'
 IsSigned: 0
 MantBits: 77

DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 77
 FractionLength: 0

Compatibility Considerations
MATLAB Code

MATLAB code that depends on the return arguments of these functions being a structure with fields
named Class, MantBits or GuardBits no longer works correctly. Change the code to access the
appropriate properties of a NumericType object, for example, DataTypeMode, Signedness,
WordLength, FractionLength, Slope and Bias.

C Code

20-7

https://www.mathworks.com/help/releases/R2013b/simulink/slref/sint.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/ufix.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/ufrac.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/uint.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink.numerictype.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/fixdt.html

Update C code that expects the data type of parameters to be a legacy structure to handle
NumericType objects instead. For example, if you have S-functions that take legacy structures as
parameters, update these S-functions to accept NumericType objects.

MAT-files

Effective R2013b, if you open a Simulink model that uses a MAT-file that contains a data type
specification created using the legacy functions, the model uses the same data types and behaves in
the same way as in previous releases but Simulink generates a warning. To eliminate the warning,
recreate the data type specifications using NumericType objects and save the MAT-file.

You can use the fixdtupdate function to update a data type specified using the legacy structure to
use a NumericType. For example, if you saved a data type specification in a MAT-file as follows in a
previous release:

oldDataType = sfrac(16);
save myDataTypeSpecification oldDataType

use fixdtUpdate to recreate the data type specification to use NumericType:

load DataTypeSpecification
fixdtUpdate(oldDataType)

ans =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Signed'
 WordLength: 16
 FractionLength: 15
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

For more information, at the MATLAB command line, enter:

fixdtUpdate

numberofelements function being removed in a future release
The numberofelements function will be removed in a future release of Fixed-Point Designer
software. Use numel instead.

R2013b

20-8

https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numberofelements.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numel.html

R2013a

Version: 4.0

New Features

Bug Fixes

Compatibility Considerations

21

Product restructuring
The Fixed-Point Designer product replaces two pre-existing products: Fixed-Point Toolbox™ and
Simulink Fixed Point™ . You can access archived documentation for both products on the
MathWorks® Web site.

Histogram logging in instrumented MATLAB Code Generation report
The buildInstrumentedMex and showInstrumentationResults instrumentation functions now
can generate log2 histograms. A histogram is generated for each named and intermediate variable
and for each expression in your code. The code generation report Variables tab includes a link to the
histogram for each variable. You can use this histogram to determine the word and fraction lengths
for your fixed-point values. Refer to the buildInstrumentedMex and
showInstrumentationResults reference pages for information.

fi object in indexing and switch-case expressions
Effective this release, you can use fi objects as indices to arrays of built-in types and fi types. You
can also use fi objects in switch-case expressions. These changes let you use fi objects without
having to convert them. See the fi reference page for examples.

zeros, ones, and cast code reuse for floating-point and fixed-point
types
The zeros, ones, and cast functions now work with fixed-point data types as well as built-in data
types. The functions can now return an output whose class matches that of a specified numeric
variable or fi object. For built-in data types, the output assumes the numeric data type, sparsity, and
complexity (real or complex) of the specified numeric variable. For fi objects, the output assumes the
numerictype, complexity (real or complex), and fimath of the specified fi object.

For example:

>> a = fi([],1,24,12);
>> c = cast(pi,'like',a)

c =

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

>> z = zeros(2,3,'like',a)

z =

 0 0 0
 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed

R2013a

21-2

https://www.mathworks.com/help/doc-archives.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/buildinstrumentedmex.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/showinstrumentationresults.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/fi.html

 WordLength: 24
 FractionLength: 12

>> o = ones(2,3,'like',a)

o =

 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

This capability allows you to cleanly separate algorithm code in MATLAB from data type
specifications. Using separate data type specifications enables you to:

• Reuse your algorithm code with different data types.
• Switch easily between fixed-point and floating-point data types to compare fixed-point behavior to

a floating-point baseline.
• Try different fixed-point data types to determine their effect on the behavior of your algorithm.
• Write clean, readable code.

For more information, see Implement FIR Filter Algorithm for Floating-Point and Fixed-Point Types
using cast and zeros.

Code generation for x.^n when n is a variable and x is a fi object
If the output type can be derived from the input settings, the mpower and power functions no longer
require a constant exponent input. For more information, see mpower and power.

Fixed-Point Advisor support for model reference
The Fixed-Point Advisor now performs checks on referenced models. It checks the entire model
reference hierarchy against fixed-point guidelines. The Advisor also provides guidance about model
configuration settings and unsupported blocks to help you prepare your model for conversion to fixed
point.

Automated conversion of floating-point to fixed-point types in MATLAB
Coder projects
You can now convert floating-point MATLAB code to fixed-point C code using the fixed-point
conversion capability in MATLAB Coder projects. You can choose to propose data types based on
simulation range data, static range data, or both.

Note You must have a MATLAB Coder license.

During fixed-point conversion, you can:

21-3

https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/convert-fir-filter-to-fixed-point-with-types-separate-from-code.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/convert-fir-filter-to-fixed-point-with-types-separate-from-code.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/mpower.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/power.html

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Validate that you can build your project with the proposed data types.
• Test numerics by running the test file with the fixed-point types applied.
• View a histogram of bits used by each variable.

For more information, see Propose Fixed-Point Data Types Based on Simulation Ranges and Propose
Fixed-Point Data Types Based on Derived Ranges.

Improved autoscaling for models with virtual bus signals
Autoscaling with the Fixed-Point Tool now handles data type constraints for virtual buses that do not
have any associated bus objects. The data type proposals take into account the constraints introduced
by these bus signals.

This improved autoscaling reduces data type mismatch errors. It also enables the Fixed-Point Tool to
provide additional diagnostic information when you accept autoscaling proposals. For more
information, see Shared Data Type Summary.

Data Type Override for MATLAB Function block using built-in doubles
and singles
The data type override rules for MATLAB Function block input signals and parameters have changed.
If the input signals and parameters are double or single, and you specify data type override to be
Double or Single, the overridden data types are now built-in double or built-in single, not fi
double and fi single as in previous releases. If the input signals and parameters are fi objects or
fixed-point signals, and you specify data type override to be Double or Single, the overridden data
types are fi double and fi single as in previous releases. For more information, see MATLAB
Function Block with Data Type Override.

Compatibility Considerations
If you have MATLAB Function block code from previous releases that contains special cases for fi
double or fi single, and you specify data type override to be Double or Single, you might have
to update this code to handle built-in double and single.

Instrumentation for arrays of structs
The buildInstrumentedMex and showInstrumentationResults instrumentation functions now
show instrumentation results for arrays of structs. Each field of each struct is logged and appears in
the code generation report on the Variables tab.

File I/O function support
The following file I/O functions are now supported for code acceleration and generation:

R2013a

21-4

https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-simulation-ranges.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/working-with-the-fixed-point-tool.html#br18ikk-3
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/matlab-function-block.html#bsyjhnu-3
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/matlab-function-block.html#bsyjhnu-3
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/buildinstrumentedmex.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/showinstrumentationresults.html

• fclose
• fopen
• fprintf

To view implementation details, see Functions Supported for Code Acceleration or Generation.

Support for nonpersistent handle objects
You can now accelerate code using fiaccel for local variables that contain references to handle
objects or System objects. In previous releases, accelerating code for these objects was limited to
objects assigned to persistent variables.

Load from MAT-files for code acceleration
fiaccel now supports a subset of the load function for loading run-time values from a MAT-file. It
also provides a new function, coder.load, for loading compile-time constants. This support
facilitates code generation from MATLAB code that uses load to load constants into a function. You
no longer have to manually type in constants that were stored in a MAT-file.

To view implementation details for the load function, see Functions Supported for Code Acceleration
or Generation.

New toolbox functions supported for code acceleration and
generation
To view implementation details, see Functions Supported for Code Acceleration or Generation.

Bitwise Operation Functions

• flintmax

Computer Vision System Toolbox Classes and Functions

• binaryFeatures
• insertMarker
• insertShape

Data File and Management Functions

• computer
• fclose
• fopen
• fprintf
• load

Image Processing Toolbox Functions

• conndef
• imcomplement

21-5

https://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/coder.load.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/flintmax.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/binaryfeaturesclass.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/insertmarker.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/insertshape.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/computer.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
https://www.mathworks.com/help/releases/R2013a/images/ref/conndef.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imcomplement.html

• imfill
• imhmax
• imhmin
• imreconstruct
• imregionalmax
• imregionalmin
• iptcheckconn
• padarray

Interpolation and Computational Geometry

• interp2

MATLAB Desktop Environment Functions

• ismac
• ispc
• isunix

String Functions

• strfind
• strrep

Function to be removed in a future release
The saveglobalfimathpref will be removed in a future release.

Compatibility Considerations
Do not save globalfimath as a MATLAB preference. If you have previously saved globalfimath
as a MATLAB preference, use removeglobalfimathpref to remove it.

Function being removed
The emlmex function has been removed.

Compatibility Considerations
The emlmex function generates an error in R2013a. Use fiaccel instead.

R2013a

21-6

https://www.mathworks.com/help/releases/R2013a/images/ref/imfill.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imhmax.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imhmin.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imreconstruct.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmax.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmin.html
https://www.mathworks.com/help/releases/R2013a/images/ref/iptcheckconn.html
https://www.mathworks.com/help/releases/R2013a/images/ref/padarray.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/ismac.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/ispc.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/isunix.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/strfind.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/strrep.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/fiaccel.html

	R2022b
	Manage Simulink parameter diagnostics related to numeric issues
	New Euler to North-East-Down Transformation HDL Optimized block
	Improved numerical accuracy and generated code efficiency for relational operations
	fixed.svd and svd Functions: Fixed-point singular value decomposition
	Lookup Table Optimizer support for curve fitting objects
	Reduced latency of partial-systolic QR decomposition and matrix solve blocks
	New blocks for burst Q-less QR decomposition and asynchronous matrix solve
	New Simulink edit-time and Model Advisor check for numeric efficiency
	Expanded support for half-precision data type
	fixed.realConditionNumberUpperBound and fixed.complexConditionNumberUpperBound Functions: Analytically determine an upper bound for condition number
	fixed.singularValueUpperBound Function: Upper bound for largest singular value of matrix
	Specify maximum word length in functions for analytically determining fixed-point data types
	fixed.fimathLike: Create fimath object like input
	Linear system solver and matrix factorization blocks use AMBA AXI handshake protocol
	Updated Numeric Type Scope Interface
	New Fixed-Point Designer Examples

	R2022a
	Expanded support for Tikhonov regularization parameter in linear system solver and matrix factorization blocks and functions
	Lookup table optimization support for curve fitting objects
	Lookup table optimization improved memory reduction for 1D and flat interpolation
	Estimate cost of generated code for Simulink models
	Improved numerical accuracy and generated code efficiency for fixed-point division with mixed signedness and slope and bias scaling
	Improved generated code fixed-point division by zero protection
	Improved numerical accuracy and generated code efficiency for fixed-point operations that do not lose precision
	Implicit expansion for logical operators, bitwise operations, and division, automatically expand dimensions of length 1
	Improved accuracy in comparing fi objects and floating-point numbers using relational operators
	GPU code generation support for half-precision data types in MATLAB Function blocks
	New functions and syntax supported for half-precision inputs
	fi bitset now supports scalar expansion
	New Fixed-Point Designer Examples

	R2021b
	Generate native half-precision C code for embedded hardware targets
	Rapid Accelerator mode support for half-precision floating-point data types in Simulink
	Generate an optimized lookup table approximation as a MATLAB function
	Improved numerical accuracy and generated code efficiency for fixed-point multiplication with slope and bias scaling
	Improved numerical accuracy and generated code efficiency for fixed-point division with slope and bias scaling
	Implicit Expansion: For fi plus, minus, and times, automatically expand dimensions of length 1
	Fixed-Point Tool: Pause and resume data type optimization search, import fxpOptimizationOptions object, and guided workflow selection
	Pause and resume data type optimization search
	Fixed-Point Tool: Import fxpOptimizationOptions object
	Fixed-Point Tool provides guided workflow selection

	Data Type Optimization: Restrict instrumentation to a subsystem, enforce known data types, maintain model parameter settings, and warn about unsupported constructs
	Restrict instrumentation to a subsystem
	Enforce known data types for variables in a system
	Maintain original values of model parameters that are altered by fxpopt
	Warn about unsupported constructs

	Analytically determine fixed-point data types when solving linear systems of equations
	fixed.cordicDivide and fixed.cordicReciprocal Functions: Fixed-point divide and reciprocal using CORDIC
	New functions supported for half-precision inputs
	fi support for dec2base, dec2bin, and dec2hex
	Data Type Optimization: Specify multiple types of tolerances
	New Fixed-Point Designer Examples
	Functionality being removed or changed
	Change in default behavior of quantizenumeric for complex input
	Change in rounding behavior for quantize function

	R2021a
	Half-precision data type support for MATLAB Function blocks
	New HDL-optimized Simulink blocks for reciprocal, divide, and modulo
	New Simulink blocks and MATLAB functions for divide and modulo
	Improved numerical accuracy and generated code efficiency for cast operations
	Generate optimized one-dimensional lookup tables for HDL applications
	New Fixed-Point Designer Examples
	Reduced HDL resource utilization in fixed-point matrix library blocks
	fixed.extractNumericType function: Extract numeric type of input
	Generate C++ code for half-precision floating-point data types in Simulink
	Control inherited block output data type for half-precision
	Fixed-Point Tool: View optimization details, visualize data types, and manually stop optimization
	View optimization details in the Fixed-Point Tool
	Data type visualizer: Understand and analyze optimized data types by viewing histograms of the dynamic ranges of signals in your model
	Stop data type optimization

	Lookup table optimization support for functions with scalar inputs
	Improved lookup table value optimization
	Improved numerical accuracy and generated code efficiency for fi inputs to power, .^
	Data type optimization workflow improvements
	Override data types with scaled doubles
	Log a reduced set of data points

	Stop optimization in Lookup Table Optimizer app
	New Fixed-Point Designer Simulink block library
	Functionality being removed or changed
	Inexact property names for fi, fimath, and numerictype objects not supported

	R2020b
	Half Precision in Simulink: Design, simulate, and generate code for half-precision systems
	Expanded half-precision support for Deep Learning Toolbox and FFT functions
	Explore half precision in optimized lookup tables
	New API functions for half-precision data type support in user-written S-functions
	New QR decomposition and matrix solve Simulink blocks
	New QR decomposition and matrix solve MATLAB functions
	Optimize data types based on operator counts
	Export optimization workflow steps to a MATLAB script
	Automatically propagate slope-bias data types during data type optimization
	Data type optimization workflow improvements
	Automatically isolate constructs not supported for fixed-point conversion
	Override data types in range collection step of optimization
	Inspect optimization solutions using Simulation Manager

	Functionality being removed or changed
	Change in default behavior of fi for -Inf, Inf, and NaN
	Change in default data type override in the Fixed-Point Tool

	R2020a
	Half Precision: Design, simulate, and generate code for half-precision systems
	Half precision code generation in MATLAB
	Tech Preview: Half precision in Simulink

	Fixed-Point Tool: Convert and optimize data types, and explore ranges
	New Fixed-Point Designer Simulink block library
	Math Operations
	Matrix Operations

	Lookup Table Optimization: Iterative redesign and batch compression of lookup tables, parallelization of lookup table optimization
	Iteratively redesign lookup tables in your model
	Automatically compress all lookup tables in a system
	Parallelized lookup table optimization

	Data Type Optimization: Specify a safety margin, enforce known data types, and other enhancements
	Review all changes made during optimization
	Specify a safety margin for optimization
	Enforce known data types in a system
	Revert optimization

	Coder Type Editor: Create and edit input types interactively
	normalizedReciprocal: Compute the normalized reciprocal
	nextpow2: Compute the next-higher power of 2 of fixed-point values
	Improved numerical accuracy for slope-bias scaled fixed-point operations
	Generate test data as a dataset
	Functionality being removed or changed

	R2019b
	Propose data types based on multiple simulation scenarios in the Fixed-Point Tool
	Restore model to original design
	Quantize and generate fixed-point C/C++ code for a trained SVM model (requires MATLAB Coder and Statistics and Machine Learning Toolbox)
	Allow off-curve table values in optimized lookup tables
	Generate optimized AUTOSAR-compliant lookup table
	Generate simulation inputs to test full operating range of design
	Features under tech preview
	Tech Preview: HDL-optimized fixed-point matrix operations blocks
	Tech Preview: Half-precision data types in Simulink

	R2019a
	Emulate hardware handling of denormal numbers
	New data type propagation rules for Sum, Gain, and Product blocks
	Automatically prepare Simulink systems for conversion to fixed point
	Complex support for half-precision
	Specify multiple simulation scenarios for data type optimization
	Lookup table optimization options available in the app
	Specify new constraints for lookup table optimization
	Derived range analysis support for fixed-point optimization
	Specify tolerances of signals in system for conversion
	New functions supported for half-precision inputs

	R2018b
	Lookup Table Optimization: Automatically replace subsystems with a direct lookup table and other enhancements​
	Approximate a Subsystem with a lookup table
	Generate a direct lookup table to approximate a function or subsystem
	Generate a lookup table approximation from a function handle using the Lookup Table Optimizer app
	Generate lookup tables with flat and nearest interpolation methods
	Automatically replace blocks with an optimized lookup table block

	Data Type Optimization: Using parallel simulations, automatically select and apply heterogeneous data types for your system under design
	Parallel support for data type optimization
	New method for specifying required behavior of optimized design

	Single Precision Converter: Convert MATLAB Function blocks to single precision
	cordicacos and cordicasin Functions: Compute fixed-point CORDIC inverse sine and cosine
	Simulation Analysis and Performance: Instrumentation support for Fast Restart mode
	Explore and debug Fixed-Point Tool results with sorting and filtering functionalities
	Design and simulate half-precision systems in MATLAB

	R2018a
	Lookup table optimization: Approximate functions using a lookup table and optimize existing lookup tables to minimize RAM usage
	Data type optimization: Automatically select and apply heterogeneous data types for your system under design, optimizing bit width.
	Redesigned code generation reports: View fiaccel and instrumentation results with improved user interface

	R2017b
	Simplified Fixed-Point Tool: Convert Simulink systems to fixed point using the updated tool that provides guidance at each step of the workflow
	Data Type Visualizer: Understand and analyze data type choices by viewing histograms of the dynamic range of signals in your model
	Data Type Exploration: Iteratively explore multiple floating point to fixed-point conversions to determine the optimal choice
	Function Input and Output Logging: Selectively log and plot function inputs and outputs at any level of your design in the Fixed-Point Converter app
	Simulink Diagnostic Management: Suppress immaterial diagnostic warnings and errors from specific blocks to efficiently discover modeling errors
	Expanded Overflow Diagnostics: Comprehensive run-time diagnostics for wrapping and saturating overflows from Stateflow and MATLAB Function blocks
	Autoscaling Lookup Table Objects: Propose and apply fixed-point data types for Simulink Lookup Table and Breakpoint objects
	Check for expensive fixed-point data types in generated code
	Propose and apply data types for model reference blocks programmatically
	cordictanh function for computing fixed-point CORDIC-based hyperbolic tangent
	Functionality being removed or changed

	R2017a
	Simulink Diagnostic Management: Control which simulation and fixed-point diagnostic warnings you receive from specific blocks, including model reference
	Select blocks with certain diagnostic suppressions by default
	Diagnostic suppressor functions support MSLDiagnostic as input argument
	Improved workflow for suppressing diagnostics from referenced models

	Derived range analysis support for System objects in Simulink
	Autoscaling support for Simulink.AliasType objects
	Improved data type proposals for shared data type groups across model reference
	More fixed-size variable information in Convert to Fixed-Point step of the Fixed-Point Converter app
	fimath property changes

	R2016b
	Single-Precision Conversion: Automatically convert double-precision systems to use single-precision data types in Simulink
	Float to Fixed Conversion of MATLAB Function Blocks: Automatically generate fixed-point versions of floating-point MATLAB Function blocks
	Histogram Instrumentation in Simulink: Generate log2 histograms of Simulink signals and blocks from simulation data
	Autoscaling numerictype Objects: Propose and apply fixed-point data types for Simulink numeric type objects
	Range analysis support for FIR filters, Dead Zone, and Rate Limiter blocks
	Simulink Diagnostic Suppressor
	Reduced number of multiplication helper functions
	Improved accuracy of fixed-point sin, cos, and mod functions
	Improved workflow for collecting and analyzing ranges in the Fixed-Point Converter app

	R2016a
	Autoscaling Parameter Objects: Automatically propose and apply data types for parameter objects
	View and edit fi objects in Model Explorer
	Simulate system level designs that integrate referenced models targeting an assembly of heterogeneous embedded devices
	Enhancements to Fixed-Point Converter app
	Support for arrays of structures
	Structures in generated fixed-point code
	Revert changes to input type definitions
	View complete error message in error table
	Additional keyboard shortcuts in the code generation report
	Changes to Fixed-Point Conversion Code Coverage

	R2015aSP1
	R2015b
	Simulink Fixed-Point Tool workflow simplification: Propose signedness and data types for inherited and floating-point types
	System under design (SUD) specification
	Signedness proposals
	Proposals for objects using inherited and floating-point types
	Two-way traceability between model and Fixed-Point Tool
	New configurations for model settings

	Double-precision to single-precision conversion: Convert double-precision MATLAB code to single-precision MATLAB code using the command line
	MATLAB Fixed-Point Converter app streamlined workflow: Restore project state and minimize regeneration of MEX files
	Saving and restoring fixed-point conversion workflow state in the app
	Minimized regeneration of MEX files
	Specification of additional fimath properties in app editor
	Improved management of comparison plots
	Variable specializations
	Improvements to Readability of Generated Code
	Tab completion for specifying files
	Improvements for manual type definition
	Compatibility between the app colors and MATLAB preferences

	Range analysis for Delay blocks: Improve accuracy and speed of range analysis on models using Delay blocks
	Control of signed shifts in fixed-point scaling operations: Control the use of signed shifts in generated code
	MATLAB
	Simulink

	Access full-precision value of fi object in decimal and string format
	Detection of multiword operations
	MATLAB
	Simulink

	Enhanced Model Advisor check for implementing strict single-precision designs
	System object instrumentation in Fixed-Point Tool

	R2015a
	Derived Ranges for MATLAB Function Blocks in Simulink
	Fixed-Point Converter app enhancements, including detection of dead and constant folded code, support for projects with multiple entry point functions and support for global variables
	Support for projects with multiple entry-point functions
	Support for global variables
	Code coverage based translation
	Conversion from project to MATLAB scripts for command-line fixed-point conversion
	Generated fixed-point code enhancements
	Integration with MATLAB Coder app interface

	Automated conversion of additional DSP System objects using the Fixed-Point Converter app
	Fixed-Point SimState logging and root logging improvements
	Flexible structure assignment of buses
	eye(m,'like',a) syntax supported for fixed-point inputs
	New interpolation method for generating lookup table MATLAB function replacements
	Fixed-point scaling information in Code Interface Report

	R2014b
	Fixed-Point Converter app for automated conversion of floating-point MATLAB code
	Commands for scripting fixed-point conversion and accessing the collected data in Simulink
	Automated fixed-point conversion for commonly used DSP System objects, including Biquad Filter, FIR Filter, and FIR Rate Converter
	Simulation range collection and data type proposals for MATLAB Function blocks in Simulink
	Overflow diagnostics to distinguish between wrap and saturation in Simulink
	Highlighting of potential data type issues in generated HTML report
	Code generation of for loops using fixed-point loop indices
	Cast net slope computations using rational numbers
	Lock Column View option in the Fixed-Point Tool
	Fixed-Point Advisor enhancements
	hdlram renamed hdl.RAM
	Changes to data type strings
	Signal data type display
	tostring function now uses 0 and 1 to represent signedness

	New featured examples

	R2014a
	Data type override and automatic data typing for bus objects
	Data type override for bus objects
	Autoscaling for bus objects

	Derived ranges for complex signals in Simulink
	cordicsqrt function for fixed-point CORDIC-based square root functionality
	Overflow detection with scaled double data types in MATLAB Coder projects
	Fixed-point ARM Cortex-M code replacement support for DSP System Toolbox FIR filters
	Fixed-Point Advisor support for referenced configuration sets
	Enhancements to automated conversion of MATLAB code
	Support for MATLAB classes
	Generated fixed-point code enhancements
	Fixed-point report

	Automatic C compiler setup
	More flexible control of dsp.LMSFilter System object fixed-point settings
	Derived ranges for For Each and For Each Subsystem blocks

	R2013b
	C99 long long integer data type for embedded code generation
	Model Advisor fixed-point checks with additional coverage and optimization awareness
	fi object as an index in colon expressions and an argument to numel and bit index functions
	fi object as an index in colon expressions
	fi objects as bit index input argument
	fi objects as shift-value input argument
	numel function support for fi inputs

	Improved efficiency of data type internal rules for Lookup Table blocks
	Derived ranges for complex variables in MATLAB Coder projects
	Simplified modeling of single-precision designs
	Range analysis support on Mac platforms
	Changes to showInstrumentationResults function options
	New option to suppress display of MATLAB code
	Removal of -browser option

	Changes to Continuous state-space block family range analysis support
	Enhanced fiaccel support for int64 and uint64 functions
	Support for LCC compiler on Microsoft Windows (64-bit) machines
	Warning for use of inexact fi and fimath property names
	Conversion of numeric variables into Simulink.Parameter objects
	Fixed-point conversion test file coverage results
	Fixed-point conversion workflow supports designs that use enumerated types
	Fixed-point conversion of variable-size data using simulation ranges
	Error checking improvements for bitconcat, bitandreduce, bitorreduce, bitxorreduce, bitsliceget functions
	Legacy data type specification functions return numeric objects
	numberofelements function being removed in a future release

	R2013a
	Product restructuring
	Histogram logging in instrumented MATLAB Code Generation report
	fi object in indexing and switch-case expressions
	zeros, ones, and cast code reuse for floating-point and fixed-point types
	Code generation for x.^n when n is a variable and x is a fi object
	Fixed-Point Advisor support for model reference
	Automated conversion of floating-point to fixed-point types in MATLAB Coder projects
	Improved autoscaling for models with virtual bus signals
	Data Type Override for MATLAB Function block using built-in doubles and singles
	Instrumentation for arrays of structs
	File I/O function support
	Support for nonpersistent handle objects
	Load from MAT-files for code acceleration
	New toolbox functions supported for code acceleration and generation
	Function to be removed in a future release
	Function being removed

